Muitos problemas de otimização reais apresentam mais de uma função-objetivo. Quando os objetivos são conflitantes, estratégias especializadas são necessárias, como é o caso dos algoritmos evolutivos multiobjetivo (MOEAs, do inglês Multi-objective Optimization Evolutionary Algorithms). Entretanto, se a avaliação das funções-objetivo é custosa (alto custo computacional ou econômico) muitos MOEAs propostos são impraticáveis. Uma alternativa pode ser a utilização de um modelo de aprendizado de máquina que aproxima o cálculo do fitness (surrogate) no algoritmo de otimização. Este trabalho propõe e investiga uma plataforma chamada ELMOEA/D que agrega MOEAs do estado da arte baseados em decomposição de objetivos (MOEA/D) e máquinas de aprendizado extremo (ELMs, do inglês Extreme Learning Machines) como modelos surrogate. A plataforma proposta é testada com diferentes variantes do algoritmo MOEA/D e apresenta bons resultados em problemas benchmark, comparada a um algoritmo da literatura que também utiliza MOEA/D mas modelos surrogates baseados em redes com função de base radial. A plataforma ELMOEA/D também é testada no Problema de Predição de Estrutura de Proteínas (PPEP). Apesar dos resultados alcançados pela proposta não serem tão animadores quanto aqueles obtidos nos benchmarks (quando comparados os algoritmos com e sem surrogates), diversos aspectos da proposta e do problema são explorados. Por fim, a plataforma ELMOEA/D é aplicada a uma formulação alternativa do PPEP com sete objetivos e, com estes resultados, várias direções para trabalhos futuros são apontadas. / Many real optimization problems have more than one objective function. When the objectives are in conflict, there is a need for specialized strategies, as is the case of the Multi-objective Optimization Evolutionary Algorithms (MOEAs). However, if the functions evaluation is expensive (high computational or economical costs) many proposed MOEAs are impractical. An alternative might be the use of a machine learning model to approximate the fitness function (surrogates) in the optimization algorithm. This work proposes and investigates a framework called ELMOEA/D that aggregates state-of-the-art MOEAs based on decomposition of objectives (MOEA/D) and extreme learning machines as surrogate models. The proposed framework is tested with different MOEA/D variants and show good results in benchmark problems, compared to a literature algorithm that also encompasses MOEA/D but uses surrogate models based on radial basis function networks. The ELMOEA/D framework is also applied to the protein structure prediction problem (PSPP). Despite the fact that the results achieved by the proposed approach were not as encouraging as the ones achieved in the benchmarks (when the algorithms with and without surrogates are compared), many aspects of both algorithm and problem are explored. Finally, the ELMOEA/D framework is applied to an alternative formulation of the PSPP and the results lead to various directions for future works.
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:RI_UTFPR:oai:repositorio.utfpr.edu.br:1/1254 |
Date | 26 February 2015 |
Creators | Pavelski, Lucas Marcondes |
Contributors | Delgado, Myriam Regattieri de Biase da Silva, Almeida, Carolina Paula de |
Publisher | Universidade Tecnológica Federal do Paraná, Curitiba, Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds