Return to search

Clustering Techniques for Mining and Analysis of Evolving Data

The amount of data generated is on rise due to increased demand for fields like IoT, smart monitoring applications, etc. Data generated through such systems have many distinct characteristics like continuous data generation, evolutionary, multi-source nature, and heterogeneity. In addition, the real-world data generated in these fields is largely unlabelled. Clustering is an unsupervised learning technique used to group, analyze and interpret unlabelled data. Conventional clustering algorithms are not suitable for dealing with data having previously mentioned characteristics due to memory and computational constraints, their inability to handle concept drift, distributed location of data. Therefore novel clustering approaches capable of analyzing and interpreting evolving and/or multi-source streaming data are needed.  The thesis is focused on building evolutionary clustering algorithms for data that evolves over time. We have initially proposed an evolutionary clustering approach, entitled Split-Merge Clustering (Paper I), capable of continuously updating the generated clustering solution in the presence of new data. Through the progression of the work, new challenges have been studied and addressed. Namely, the Split-Merge Clustering algorithm has been enhanced in Paper II with new capabilities to deal with the challenges of multi-view data applications. A multi-view or multi-source data presents the studied phenomenon/system from different perspectives (views), and can reveal interesting knowledge that is not visible when only one view is considered and analyzed. This has motivated us to continue in this direction by designing two other novel multi-view data stream clustering algorithms. The algorithm proposed in Paper III improves the performance and interpretability of the algorithm proposed in Paper II. Paper IV introduces a minimum spanning tree based multi-view clustering algorithm capable of transferring knowledge between consecutive data chunks, and it is also enriched with a post-clustering pattern-labeling procedure.  The proposed and studied evolutionary clustering algorithms are evaluated on various data sets. The obtained results have demonstrated the robustness of the algorithms for modeling, analyzing, and mining evolving data streams. They are able to adequately adapt single and multi-view clustering models by continuously integrating newly arriving data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-22262
Date January 2021
CreatorsDevagiri, Vishnu Manasa
PublisherBlekinge Tekniska Högskola, Institutionen för datavetenskap, Karlskrona
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationBlekinge Institute of Technology Licentiate Dissertation Series, 1650-2140 ; 2021:09

Page generated in 0.002 seconds