Return to search

Water quality modeling and rainfall estimation: a data driven approach

Water is vital to man and its quality it a serious topic of concern. Addressing sustainability issues requires new understanding of water quality and water transport. Past research in hydrology has focused primarily on physics-based models to explain hydrological transport and water quality processes. The widespread use of in situ hydrological instrumentation has provided researchers a wealth of data to use for analysis and therefore use of data mining for data-driven modeling is warranted. In fact, this relatively new field of hydroinformatics makes use of the vast data collection and communication networks that are prevalent in the field of hydrology. In this Thesis, a data-driven approach for analyzing water quality is introduced. Improvements in the data collection of information system allow collection of large volumes of data. Although improvements in data collection systems have given researchers sufficient information about various systems, they must be used in conjunction with novel data-mining algorithms to build models and recognize patterns in large data sets. Since the mid 1990's, data mining has been successful used for model extraction and describing various phenomena of interest.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-2642
Date01 July 2011
CreatorsRoz, Evan Phillips
ContributorsKusiak, Andrew
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2011 Evan Roz

Page generated in 0.002 seconds