Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-02-21T14:53:51Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
main_abntex.pdf: 4558296 bytes, checksum: 6f077e7cc7e54787fdfdb3b25b18eabb (MD5) / Made available in DSpace on 2017-02-21T14:53:51Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
main_abntex.pdf: 4558296 bytes, checksum: 6f077e7cc7e54787fdfdb3b25b18eabb (MD5)
Previous issue date: 2016-09-26 / A previsão de séries temporais é uma tarefa importante no campo da aprendizado de máquina, possuindo diversas aplicações em mercado de ações, hidrologia, meteorologia, entre outros. A análise da dependência existente nas observações adjacentes da série é necessária para que seja possível prever valores futuros com alguma precisão. Modelos dinâmicos são utilizados para realizar mapeamentos de uma série temporal, se aproximando do mecanismo gerador da série e sendo capazes de realizar previsões. No entanto, o mecanismo gerador de uma série temporal pode produzir padrões lineares e não-lineares que precisam ser devidamente mapeados. Modelos lineares como o auto-regressivo integrado de média móvel (ARIMA) são capazes de mapear padrões lineares, porém não são indicados quando existem padrões não-lineares na série. Já os modelos não-lineares como as redes neurais artificais (RNA) mapeiam padrões não-lineares, mas podem apresentar desempenho reduzido na presença de padrões lineares em relação aos modelos lineares. Fatores como a definição do número de elementos de entrada da RNA, número de amostras de treinamento podem afetar o desempenho. Abordagens híbridas presentes na literatura realizam o mapeamento dos padrões lineares e não-lineares simultaneamente ou aplicando duas ou mais fases nas previsões. Seguindo a suposição de que os modelos são bem ajustados, a diferença entre o valor previsto e a série real demonstra um comportamento de ruído branco, ou seja, considera-se que a diferença entre os valores (resíduo) é composta por choques aleatórios não correlacionados. Na abordagem de duas ou mais fases, o resíduo gerado pelo modelo aplicado na primeira fase é utilizado pelo segundo modelo. O problema do ajuste pode ser decorrente dos parâmetros mal ajustados e também da série temporal devido à possível necessidade de transformações. Tais abordagens geram previsões mais precisas quando comparadas às técnicas tradicionais. Nesta tese, são explorados sistemas evolucionários para a otimização de parâmetros de técnicas lineares e não-lineares visando o mapeamento dos padrões da série temporal. A abordagem proposta utiliza um preprocessamento automático através de um filtro de suavização exponencial para extrair uma série com distribuição normal. A diferença da série temporal e a série filtrada é mapeada por um sistema composto por um método auto-regressivo (AR) e máquina de vetor de suporte para regressão (SVR). Variações do algoritmo de otimização por enxame de partículas (PSO) e algoritmos genéticos são aplicados na otimização dos hiper-parâmetros do sistema. A previsão final é realizada através da soma das previsões de cada série. Para fins de avaliação do método proposto, experimentos foram realizados com bases de problemas reais utilizando métodos da literatura. Os resultados demonstram que o método obteve previsões precisas na maioria dos casos testados. O filtro de suavização exponencial utilizado supõe que a série possua nível constante (sem tendência). Séries que possuem tendências lineares foram devidamente tratadas, no entanto tendências exponenciais ou polinomiais apresentaram desempenho reduzido. O método proposto possui potencial para melhorias, aplicando métodos que realizem o mapeamento automático de tendências como a suavização exponencial dupla. Nesta tese o método aditivo foi utilizado para combinação de previsões, no entanto em algumas séries o modelo multiplicativo pode ser mais adequado, produzindo previsões mais precisas. / Time series forecasting is an important task in the field of machine learning and has many applications in stock market, hydrology, weather and so on. The analysis of the dependence between adjacent observations in the series is necessary in order to achieve better forecasts. Dynamic models are used to perform mappings in the time series by approximating to thedata generating process and being able to perform predictions. However, the data generating process of a time series may produce both linear and nonlinear patterns that need to be mapped. Linear models such as the autoregressive integrated moving average (ARIMA) are able to map linear patterns, although not indicated when nonlinear patterns are present in the series. Nonlinear models such as the artificial neural networks (ANNs) perform nonlinear mappings but demonstrate reduced performance in the presence of linear patterns in comparison to linear models. Hybrid approaches in the literature perform mappings of linear and nonlinear patterns simultaneously or applying two or more phases.Supposing that the models are adjusted to the data, the difference between the predicted value and the data presents a White noise behavior, thus it is considered that the difference of values (residual) is composed by uncorrelated random shocks. In two-phase approaches the residual produced by the linear model in the first phase is used in the nonlinear model. Also the parameters of the models have an important influence on their performance. Such approaches produce more accurate predictions when compared with traditional methods. In this thesis, we explore evolutionary system in the context of optimization of parameters for both linear and nonlinear methods, taking into consideration the patterns in a time series. In the proposed approach, an exponential smoothing filter is used to decompose a series with normal distribution which is applied to an ARIMA model and the residual series is applied to a system composed by an autoregressive (AR) and a support vector regression methods (SVR). Variations of particle swarm optimization (PSO) algorithm and genetic algorithm (GA) are employed in the optimization of hyper-parameters of the system. Experiments were conducted using data sets from real world problems comparing with methods in the literature. The results indicate that the method achieved accurate predictions in most cases. The exponential smoothing filter assumes that the given series has no trend patterns. Series with linear trend were detrended, however in series with exponential or polynomial trends the proposed method achieved reduced performance. The proposed method has potential to improvements by using methods that perform an automatic mapping of trend patterns (double exponential smoothing). In this work, the additive model is adopted, however in some series a multiplicative model could achieve better forecasts.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/18353 |
Date | 26 September 2016 |
Creators | OLIVEIRA, João Fausto Lorenzato de |
Contributors | http://lattes.cnpq.br/6321179168854922, LUDERMIR, Teresa Bernarda |
Publisher | Universidade Federal de Pernambuco, Programa de Pos Graduacao em Ciencia da Computacao, UFPE, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds