Return to search

An NFFT based approach to the efficient computation of dipole-dipole interactions under different periodic boundary conditions

We present an efficient method to compute the electrostatic fields, torques and forces in dipolar systems, which is based on the fast Fourier transform for nonequispaced data (NFFT). We consider 3d-periodic, 2d-periodic, 1d-periodic as well as 0d-periodic (open) boundary conditions. The method is based on the corresponding Ewald formulas, which immediately lead to an efficient algorithm only in the 3d-periodic case. In the other cases we apply the NFFT based fast summation in order to approximate the contributions of the nonperiodic dimensions in Fourier space. This is done by regularizing or periodizing the involved functions, which depend on the distances of the particles regarding the nonperiodic dimensions. The final algorithm enables a unified treatment of all types of periodic boundary conditions, for which only the precomputation step has to be adjusted.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-171040
Date11 June 2015
CreatorsNestler, Franziska
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, text/plain, application/zip
Relationdcterms:isPartOf:Preprintreihe der Fakultät für Mathematik der TU Chemnitz; 2015-07

Page generated in 0.0024 seconds