The fundamental character of excitation system is to provide the direct-current power for field windings for synchronous generators. Excitation control system controls the generator output voltage and reactive power by varying the field winding¡¦s currents. Therefore, it can improve the transient stability of power system.
The thesis proposed a process for modeling and simulation on a brushless coal-fired unit, since the 40 years-old magnetic amplifier (Type WMA MAG-A-STAT) Automatic Voltage Regulator (AVR) was replaced by a Programmable Logical Controller based digital redundancy system, for the purpose to verify the excitation system model and dynamic response gains in the future power system study. To establish the generator excitation system and simulations on a popular software program MATLAB/SIMULINK, we wish to manipulate the effective and precise simulation test on a personal-computer and apply Particle Swarm Optimization (PSO) to find the global optimal solution for AVR controller settings. This thesis contributes in building a reliable excitation system model with dynamic response figures for power system network planning and dispatch.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0706108-121618 |
Date | 06 July 2008 |
Creators | Shao, Ming-kai |
Contributors | Ming-Tong Tsay, Fu-Sheng Cheng, Chin-DER Yang, Whei-Min Lin |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0706108-121618 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.0018 seconds