Return to search

Sur les applications du cercle avec un intervalle plat et flots de Cherry

Dans cette thèse nous donnons une description complète de la dynamique d'une classe L de fonctions de degré un du cercle, supposées de classe (deux fois dérivable) C^2 à l'exception de deux points où seule la continuité est exigée, et telles qu'elles soient constantes sur un des intervalles délimité par ces derniers. De plus sur des demi-voisinages ouverts de ces points elles s'écrivent sous la forme x^l où l est un nombre réel positif appelé l'exposant critique de la fonction. Dans le chapitre 2 nous montrons pour la sous-classe de L des fonctions dont le nombre de rotation est de type borné, l'existence d'une transition dans la géométrie du système lorsque l'exposant critique traverse 2. Le cas plus général de fonctions en L avec nombre de rotation infinie est considéré dans le chapitre 3. Il devient pourtant plus délicat d'émettre des conjectures ; on rencontre parfois des surprises dues à laprésence de phénomènes paraboliques. De plus, nos résultats sur les applications du cercle nous permettent d'étudier l'intéressante théorie des flots de Cherry (chapitre 4). En particulier, on construit un exemple de tel flot qui a ensemble quasi-minimale métriquement non trivial. Nous donnons également une description complète des mesures physiques sur ce flot. Dans le chapitre 5 nous construisons un contrexemple de Denjoy qui est un difféomorphisme (indéfiniment dérivable) C^∞ partout sauf dans un point qui est demi-critique plat pour la fonction.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01037876
Date12 December 2013
CreatorsPalmisano, Liviana
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds