Return to search

Genetic Risk Factors in Parkinson’s Disease

Background: Parkinson’s disease (PD) is a complex disease with a multi-factorial aetiology, comprising both genetic and environmental risk factors. The disease pathology is progressive and neurodegenerative where dopaminergic nerve cell death occurs predominantly in the substantia nigra pars compacta (SNpc) with the subsequent loss of the dopamine neurotransmitter in the basal ganglia. The most significant risk factors for PD include an advancing age and a family history of the disease, while environmental and lifestyle risk factors such as pesticide exposure and smoking are widely accepted as risk altering exposures. Currently up to 10% of PD is attributed to Mendelian inherited PD at one of 13 PARK loci in 9 genes. The pursuit of common susceptibility alleles for idiopathic PD has proven challenging with only a few loci reproducibility associated with an altered risk. The aim of this thesis is to study, using a candidate gene case-control design, the potential role of genetic variants in PD. The APOE candidate gene was hypothesized to modify the risk of PD as it is a proven modifier of Alzheimer’s disease (AD). The common pathological finding in PD of elevated levels of iron within the SNpc is proposed to increase the oxidative state of the nerve cells and predispose the dopaminergic neurons to apoptosis. Therefore, susceptibility alleles within the candidate genes that regulate iron metabolism and homeostasis are hypothesized to alter iron metabolism and predispose to iron-induced neurodegeneration in PD. Missense variants and common “tagging” SNPs with the HFE, Transferrin and Transferrin Receptor genes are investigated extensively in this thesis. Finally, autosomal recessively inherited PD can result from mutations in the parkin gene at the PARK2 locus. The final hypothesis explored in this thesis suggests that non-deleterious missense variants in the parkin gene modify the risk for developing sporadic PD. Further genetic variation in the parkin gene such as exon rearrangements is a frequently reported mutation where heterozygosity for these rearrangements may increase the risk of PD. Heterozygous deletions or duplications of exons in the parkin gene provide technical challenges for their detection. In this thesis a novel assay for the detection of these mutations is investigated. Methods: Genotyping was performed using PCR-RFLP for genetic variants in the APOE (E2 and E4 alleles), HFE (C282Y, H63D and S65C), Transferrin receptor (TfR; S142G), Transferrin (Tfn; P570S and G258S), IREB2 genes (L159V) and the parkin gene (S167N, R366W and V380L) in a cohort of 425 PD cases and 387 controls recruited from throughout Queensland, Australia. A tagged SNP high-throughput genotyping approach was then employed to try to replicate single SNP associations in 6 iron-related genes using a cohort of 1034 PD cases and 774 controls. These genetic variants were analysed for direct association with PD risk, age of onset effects as well as potential gene x gene (GxG) and gene x environment (GxE) interactions. Additionally, a quantitative PCR assay was developed to detect heterozygous deletions and duplications within the parkin gene and utilised to screen 43 YOPD cases for these mutations. Results: The initial study of the HFE C282Y variant revealed a significant protective association with PD in the two independent cohorts studied. Further study did not reveal significant associations with PD for the other HFE variants or missense variants within the Tfn and TfR genes. When analysed for GxE interactions, the C282Y, P589S and G277S variants showed evidence for an increased risk of PD in synergy with pesticide and herbicide exposure. Carriers of the risk variant and with toxin exposure were at two-fold increased risk of PD, although the number of individuals in this category was small. A further investigation of the role of common genetic polymorphisms in iron genes revealed only one of the 20 SNPs genotyped using high-throughput multiplex methods, remained significantly associated with PD after correction for age and sex. The rs198855 SNP is downstream of the HFE gene and further implicates a role for HFE in PD. The APOE E4 allele demonstrated modifying effects for the age of PD onset, restricted to the female cases. Analysis of the parkin missense variants also demonstrated a modifying effect on the age of PD onset in carriers of the S167N variant, with putative interactions between the APOE E4 allele, a family history of PD and toxin exposure that further reduced the age of onset. Twenty individuals of the 43 YOPD cases screened demonstrated heterozygous parkin exon rearrangements using the novel qPCR method. Conclusions: Non-synonymous variants within iron-related genes or the parkin gene putatively interact with herbicide and pesticide exposure to increase the risk of PD or modify the phenotype, highlighting the need for future studies to address the multi-factorial aetiology of PD in their study design and analysis. This thesis provides evidence for the association between genetic variation within the HFE locus and PD and for the APOE E4 allele as a modifier of PD.

Identiferoai:union.ndltd.org:ADTP/279391
CreatorsDaniel Buchanan
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.002 seconds