Return to search

L'électrophysiologie temps-réel en neuroscience cognitive : vers des paradigmes adaptatifs pour l'étude de l'apprentissage et de la prise de décision perceptive chez l'homme

Aujourd'hui, les modèles computationnels de l'apprentissage et de la prise de décision chez l'homme se sont raffinés et complexifiés pour prendre la forme de modèles génératifs des données psychophysiologiques de plus en plus réalistes d'un point de vue neurobiologique et biophysique. Dans le même temps, le nouveau champ de recherche des interfaces cerveau-machine (ICM) s'est développé de manière exponentielle. L'objectif principal de cette thèse était d'explorer comment le paradigme de l'électrophysiologie temps-réel peut contribuer à élucider les processus d'apprentissage et de prise de décision perceptive chez l'homme. Au niveau expérimental, j'ai étudié les décisions perceptives somatosensorielles grâce à des tâches de discrimination de fréquence tactile. En particulier, j'ai montré comment un contexte sensoriel implicite peut influencer nos décisions. Grâce à la magnétoencéphalographie (MEG), j'ai pu étudier les mécanismes neuronaux qui sous-tendent cette adaptation perceptive. L'ensemble de ces résultats renforce l'hypothèse de la construction implicite d'un a priori ou d'une référence interne au cours de l'expérience. Aux niveaux théoriques et méthodologiques, j'ai proposé une vue générique de la façon dont l'électrophysiologie temps-réel pourrait être utilisée pour optimiser les tests d'hypothèses, en adaptant le dessin expérimental en ligne. J'ai pu fournir une première validation de cette démarche adaptative pour maximiser l'efficacité du dessin expérimental au niveau individuel. Ce travail révèle des perspectives en neurosciences fondamentales et cliniques ainsi que pour les ICM

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01058541
Date27 June 2014
CreatorsSanchez, Gaëtan
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds