Return to search

Prédiction de la fracture osseuse du col du fémur : modélisation par éléments finis basée sur la mécanique d’endommagement et validation expérimentale / prediction of proximal femur fracture : finite element modeling based on mechanical damage and experimental validation

Les fractures causées par l'ostéoporose de l’extrémité supérieure du fémur sont devenues un problème majeur de santé publique. Par conséquent, ce sujet devient un axe de recherche de plus en plus important pour les cliniciens et les chercheurs biomédicaux. Le but de cette étude est de développer une nouvelle approche pour prédire la fracture du col du fémur. Cette étude propose de développer et valider des modèles par éléments finis (EF) en 2D et 3D, basés sur le concept de l’endommagement mécanique des milieux continus, permettant de simuler la fracture de la partie proximale du fémur en tenant compte de l’initiation progressive de fissures et leur progression. Deux configurations ont été utilisées: appui monopodal et chute. L’ensemble des lois de comportements quasi fragile couplées à une loi d’endommagement sont implémentées en langage FORTRAN dans ABAQUS/Standard (sous-programme de type UMAT). La densité minérale osseuse (BMD) a été mesurée par l’absorptiométrie à rayon X en double énergie DXA pour la région d'intérêt. Les modèles ont été développés dans deux variantes (l’une isotrope et l’autre orthotrope) puis validés avec des résultats expérimentaux obtenus sur des essais en appui monopodale réalisés sur des fémurs humain. Durant ces essais, des mesures optiques basées sur la méthode de corrélation d'images numériques (DIC) ont été réalisées afin d’acquérir les différents champs de déplacement et de déformation. Le modèle numérique 3D a réussi à prédire l’ensemble de la courbe force-déplacement ainsi que l'emplacement et l'amorce de la rupture des fémurs. Par ailleurs, Malgré sa robustesse, la variante 3D du modèle numérique reste difficilement exploitable dans l’état pour réaliser un diagnostic préventif dans des délais acceptables pour des cliniciens, car très consommatrice en temps de calcul. Pour pallier à cela, le modèle simplifié en 2D a été préliminairement validé sous les mêmes conditions aux limites et les résultats ont montré une bonne corrélation avec l’expérience. Ces travaux ont souligné le potentiel de la modélisation par éléments finis basée sur l’endommagement quasi-fragile à devenir un outil complémentaire de prédiction du risque de la fracture osseuse. / Femoral fractures caused by the osteoporosis become major problem of public health, and therefore, this subject becomes an increasingly important goal for both clinicians and biomedical researchers. The purpose of this study is to develop a new coupled approach to predict the fracture of neck femoral. The current study proposes a validated 2D and 3D finite element (FE) models based on continuum damage mechanics in order to simulate human proximal femur fracture considering the progressive cracks initiation and propagation. These models are applied and validated under single limb stance and sideways fall configuration. Quasi brittle behavior laws coupled to damage are implemented in FORTRAN and fed into ABAQUS/Standard codes to describe the constitutive behavior (subroutine UMAT). Bone mineral density (BMD) is measured using dual energy X-ray absorptiometry (DXA) for the region of interest. The models have been developed within two variants (one isotropic, the other anisotropic) and validated with experimental results of tests performed on human femur samples under single limb stance configuration. During these tests, optical measurements based on the method of digital image correlation (DIC) were conducted to acquire the various fields of displacement and deformation. To calculate the fracture risk of the femoral head, it is necessary to assign correctly the bone material properties. The 3D FE models were able to predict the overall force-displacement curve, location and initiation of femur fractures. Moreover, despite its robustness, this 3D FE model is still limited to be used, within clinically acceptable time, for diagnostic purposes. To overcome this, the model was simplified into 2D model which has been preliminarily validated under identical boundary conditions and the results showed a good correlation with experiments. These studies have highlighted the potential of the finite element model based on quasi-brittle damage to become a complementary tool for predicting the risk of bone fracture.

Identiferoai:union.ndltd.org:theses.fr/2013ORLE2045
Date22 November 2013
CreatorsBettamer, Awad
ContributorsOrléans, Hambli, Ridha, Allaoui, Samir
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds