Submitted by JEFERSON BACK VANDERLINDE null (jefersonbv@yahoo.com.br) on 2017-11-01T16:38:25Z
No. of bitstreams: 1
jeferson_tese_final_20171101.pdf: 4860852 bytes, checksum: 2f99c37969be3815f82b1b4455a40230 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-11-13T15:38:34Z (GMT) No. of bitstreams: 1
vanderlinde_jb_dr_ilha.pdf: 4860852 bytes, checksum: 2f99c37969be3815f82b1b4455a40230 (MD5) / Made available in DSpace on 2017-11-13T15:38:34Z (GMT). No. of bitstreams: 1
vanderlinde_jb_dr_ilha.pdf: 4860852 bytes, checksum: 2f99c37969be3815f82b1b4455a40230 (MD5)
Previous issue date: 2017-09-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, consideram-se a análise teórica e a implementação computacional dos algoritmos Primal Simplex Canalizado (PSC) e Dual Simplex Canalizado (DSC) especializados. Esses algoritmos foram incorporados em um algoritmo Branch and Bound (B&B) de modo a resolver o problema de Planejamento da Expansão de Sistemas de Transmissão (PEST). Neste caso, o problema PEST foi modelado usando os chamados modelo de Transportes e modelo Linear Disjuntivo (LD), o que produz um problema de Programação Linear Inteiro Misto (PLIM). O algoritmo PSC é utilizado na resolução do problema de Programação Linear (PL) inicial após desconsiderar a restrição de integralidade do problema PLIM original. Juntamente com o algoritmo PSC, foi implementada uma estratégia para reduzir o número de variáveis artificiais adicionadas ao PL, consequentemente reduzindo o número de iterações do algoritmo PSC. O algoritmo DSC é utilizado na reotimização eficiente dos subproblemas gerados pelo algoritmo B&B, através do quadro ótimo do PL inicial, excluindo, assim, a necessidade da resolução completa de cada subproblema e, consequentemente, reduzindo o consumo de processamento e memória. Nesta pesquisa, é apresentada uma nova proposta de otimização, e, consequentemente, a implementação computacional usando a linguagem de programação FORTRAN que opera independentemente de qualquer solver. / In this research, the theoretical analysis and computational implementation of the specialized dual simplex algorithm (DSA) and primal simplex algorithm (PSA) for bounded variables is considered. These algorithms have been incorporated in a Branch and Bound (B&B) algorithm to solve the Transmission Network Expansion Planning (TNEP) problem. In this case, the TNEP problem is modeled using transportation model and linear disjunctive model (DM), which produces a mixed-integer linear programming (MILP) problem. After relaxing the integrality of investment variables of the original MILP problem, the PSA is used to solve the initial linear programming (LP) problem. Also, it has been implemented a strategy in PSA to reduce the number of artificial variables which are added into the LP problem, and consequently reduces the number of iterations of PSA. Through optimal solution of the initial LP, the DSA is used in efficient reoptimization of subproblems, resulting from the B&B algorithm, thus excludes the need for complete resolution of each subproblems, which results reducing the CPU time and memory consumption. This research presents the implementation of the proposed approach using the FORTRAN programming language which operates independently and does not use any commercial solver.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/152089 |
Date | 06 September 2017 |
Creators | Vanderlinde, Jeferson Back [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Romero Lázaro, Rubén Augusto [UNESP], Fu, Yong |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Relation | -1, -1, -1 |
Page generated in 0.0027 seconds