Fundamental to the understanding of how rivers transform and shape our environment is the role of turbulence and complex, three-dimensional flow, such as vorticity, in sediment transport and erosion. However, classical sediment transport models (or formulae) are based, for the most part, on boundary shear stress and do not incorporate these natural phenomena. This is understandable given that the relationship between turbulence generation, intensity and form; the influence of turbulence on mobile sediment; and the magnitude and patterns of deposition and erosion are complex and difficult to quantify. Nevertheless, the failure to incorporate turbulence and complex, three-dimensional flow into existing models means that our understanding of sediment transport remains incomplete.
The central hypothesis of this thesis is that vortical motion is the main factor in the development of local scour. To examine this, a comprehensive experimental approach was taken. This approach involved detailed measurements of the unique three-dimensional patterns of velocity, turbulence and bed morphology associated with flow in an open channel with and without the presence of submerged groyne-like structures (stream barbs and wing dikes) at both the laboratory and field scales. Using densely spaced velocity data and new techniques for processing and analyzing these data, it was possible to identify complex features of the flow field at both scales, such as the presence of vortex cores, and correlate these with changes in bed levels. These data provide a unique perspective of the spatial variability of velocity, turbulence and bed morphology in open channels (and in particular in channel bends, where flow is highly three-dimensional). In particular, it was found that, of the flow parameters analyzed, turbulent stresses were most correlated to scour in channel bends without the presence of structures. In contrast, vorticity was found to be the dominant factor in local scour hole development in the vicinity of submerged structures at both the laboratory and field scale. Such data are rare (if non-existent) in existing experimental research, particularly at the scale of a large natural river.
This research also examines stream barb design and performance. Stream barbs (also known as submerged groynes or spur dikes) are a relatively novel approach to stream bank protection and are not common in Canada. The design and installation of stream barbs in a creek in Ottawa (Sawmill Creek) was undertaken to serve as a demonstration project for the use of these structures in a semi-alluvial channel, for which no such case studies exist. Three years of monitoring the site and the performance of these structures to reduce bank erosion and improve aquatic habitat have been carried out. Laboratory testing of stream barb performance was also undertaken and showed that with improper design, the outer bank in a channel bend may be more susceptible to erosion due to excessive local scour downstream of the barb. In particular, to avoid bank erosion downstream of the barb, barbs should be small, such that they create minimum flow obstruction, and include a bank key that is wider than the barb itself and extends in the downstream direction.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./20208 |
Date | 09 September 2011 |
Creators | Jamieson, Elizabeth Clare |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0019 seconds