Recently, the use of Mechanically Fastened Fiber-Reinforced Polymer (MF-FRP) systems has emerged as a viable means for flexural strengthening of reinforced concrete members. The technique is suitable for emergency repairs where constructability and speed of installation are critical requirements. The MF-FRP system consists of pre-cured FRP laminates with enhanced longitudinal bearing strength that are attached to the concrete substrate by means of mechanical steel anchors. This research project presents an experimental investigation comprising a series of flexural tests on scaled one-way RC slabs. The test matrix includes MF-FRP strengthened specimens, a counterpart with the externally bonded (EB) FRP reinforcement, and a control specimen. The effects of fastener layout and laminate length on strength increase and failure mode were studied. It is shown that with proper selection of fastener layout the MF-FRP system results in a significant deformability and strength increase, where the latter is comparable to that attained using EB-FRP sheets. Specific gaps on the existing analytical procedures for flexural strengthening with MF-FRP systems are finally discussed.
Identifer | oai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_theses-1183 |
Date | 01 January 2009 |
Creators | Napoli, Annalisa |
Publisher | Scholarly Repository |
Source Sets | University of Miami |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Theses |
Page generated in 0.0018 seconds