Return to search

RC Structures Strengthened with Mechanically Fastened FRP Systems

Recently, the use of Mechanically Fastened Fiber-Reinforced Polymer (MF-FRP) systems has emerged as a viable means for flexural strengthening of reinforced concrete members. The technique is suitable for emergency repairs where constructability and speed of installation are critical requirements. The MF-FRP system consists of pre-cured FRP laminates with enhanced longitudinal bearing strength that are attached to the concrete substrate by means of mechanical steel anchors. This research project presents an experimental investigation comprising a series of flexural tests on scaled one-way RC slabs. The test matrix includes MF-FRP strengthened specimens, a counterpart with the externally bonded (EB) FRP reinforcement, and a control specimen. The effects of fastener layout and laminate length on strength increase and failure mode were studied. It is shown that with proper selection of fastener layout the MF-FRP system results in a significant deformability and strength increase, where the latter is comparable to that attained using EB-FRP sheets. Specific gaps on the existing analytical procedures for flexural strengthening with MF-FRP systems are finally discussed.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_theses-1183
Date01 January 2009
CreatorsNapoli, Annalisa
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Theses

Page generated in 0.0018 seconds