Return to search

Design and Analysis of the Impact Diffusion Helmet Through a Finite Element Analysis Approach

By applying the finite element approach to the design and analysis of the impact diffusion helmet, many helmet configurations were able to be analyzed. Initially it was important to determine what design variables had an influence on the impact reducing abilities of the helmet design. The helmet was run through a series of Abaqus simulations that determined that a design with two oval shaped channels running along the length of the helmet was best. Next, these options were optimized to generate the helmet that produced the greatest impact reduction. The optimization simulations determined that a helmet that pushed the channels as far from the impact zone as possible reported the lowest acceleration. This indicated that removing the channels from play was most advantageous from an impact reduction perspective. Finally, a 3-D printed experimental helmet was impact tested and compared to a 3-D printed control helmet. The experimental helmet brought the channels back into the impact zone in order to judge if they had a physical effect on the acceleration. Both the simulations and the subsequent physical testing indicated that the Impact Diffusion Helmet design has a negative influence on the concussion reducing properties of a football helmet.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2851
Date01 October 2016
CreatorsWarnert, Steven Paul
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.002 seconds