Return to search

Exploiting Sparsity and Dictionary Learning to Efficiently Classify Materials in Hyperspectral Imagery

Hyperspectral imaging (HSI) produces spatial images with pixels that, instead of consisting of three colors, consist of hundreds of spectral measurements. Because there are so many measurements for each pixel, analysis of HSI is difficult. Frequently, standard techniques are used to help make analysis more tractable by representing the HSI data in a different manner.
This research explores the utility of representing the HSI data in a learned dictionary basis for the express purpose of material identification and classification. Multiclass classification is performed on the transformed data using the RandomForests algorithm. Performance results are reported.
In addition to classification, single material detection is considered also. Commonly used detection algorithm performance is demonstrated on both raw radiance pixels and HSI represented in dictionary-learned bases. Comparison results are shown which indicate that detection on dictionary-learned sparse representations perform as well as detection on radiance. In addition, a different method of performing detection, capitalizing on dictionary learning is established and performance comparisons are reported, showing gains over traditional detection methods.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-5023
Date01 May 2014
CreatorsPound, Andrew E.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0019 seconds