We focus on planar Random Walks and some related stochastic processes. The discrete models are introduced and some of their core properties examined. We then turn to the question of continuous analogues, starting with the well-known convergence of the Random Walk to Brownian Motion. For the Harmonic Explorer and the Loop Erased Random Walk, we discuss the idea for convergence to SLE(\kappa) and carry out parts of the proof in the former case using a martingale observable to pin down the Loewner driving process.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-330312 |
Date | January 2023 |
Creators | Wächter, Jonatan |
Publisher | KTH, Skolan för teknikvetenskap (SCI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2023:127 |
Page generated in 0.002 seconds