No presente trabalho, estudamos a propriedade da c0-extensão no contexto de espaços de funções contínuas denidas numa reta compacta e tomando valores em R. Nosso principal resultado é que se K é uma reta compacta, então todo subespaço fechado e com dual separável de C(K) possui a propriedade da c0-extensão em C(K) e portanto, o espaço C(K) tem a propriedade de Sobczyk. Também apresentamos uma caracterização das funções phi: K --> L contínuas, crescentes e sobrejetoras entre retas compactas para as quais a subálgebra de Banach phi*C(L) possui a propriedade da c0-extensão em C(K). / In this work, we study the c0-extension property in the context of spaces of continuous real-valued functions defined in a compact line. Our main result states that if K is a compact line, then every closed subspace of C(K) with separable dual has the c0-extension property in C(K) and therefore, the space C(K) has the Sobczyk property. We also present a characterization of the continuous order-preserving surjective maps phi : K --> L between compact lines such that the Banach subalgebra phi*C(L) has the c0-extension property in C(K).
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06062019-143955 |
Date | 11 August 2014 |
Creators | Oliveira, Claudia Correa de Andrade |
Contributors | Tausk, Daniel Victor |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0036 seconds