Return to search

The effect of different carbon sources on reduction of nitrate in effluent from the mining industry : Olika kolkällors inverkan på reduktion av nitrat i processvatten från gruvindustrin

Mine water effluent contains high levels of nitrogen due to residues from undetonated ammonium- nitrate based explosives. Excess nitrogen in aquatic ecosystems can cause eutrophication. Within a mining area, tailings and clarification ponds have the potential to reduce nitrogen levels by biological uptake of nitrogen into growing algae and denitrification in pond sediments. A previous study at the LKAB Kiruna mine investigated the potential nitrogen removal within the tailings and clarification ponds. The study showed that about 1-10 tonnes of nitrogen were removed each year, and that the removal by denitrification was limited by carbon.  The aim of this master thesis was to investigate if additions of different carbon compounds could improve the denitrification in sediment from the clarification pond at the LKAB Kiruna mine site. It was also of interest to see if the composition of the edogenous microbial community involved in nitrogen reduction changed after the treatments. Samples of sediment and pond water were collected in January 2014 and a laboratory experiment was set up where sediment and water was incubated with carbon additions under anoxic conditions. Three different carbon sources were tested: sodium acetate, hydroxyethyl cellulose and green algae. Pond water without additional carbon was used as a control. The sediment was incubated eight weeks at 20 °C with weekly water exchange and carbon addition. The removed water was analyzed to determine the amount of nitrogen removed. At start and after ending the incubation, potential denitrification in the sediment was determined with an enzymatic assay and the size of the genetic potential of nitrogen reduction was determined.  At start, the enzymatic assay showed that the potential denitrification rate in the sediment of the clarification pond at the LKAB Kiruna mine was not immediately enhanced by addition of carbon. However, during the incubation the removal of nitrate was enhanced by external carbon sources. Algae were a good carbon source, since the denitrifying community grew, the potential denitrification increased four times after incubation and the removal of nitrate was next to complete in the end of the incubation. The addition of cellulose also enhanced the denitrification activity to some extent and the abundance of genes coupled to denitrification increased. Further studies are needed to assess the practical use of external carbon sources like algae and plant material and how they would function in and potentially also affect a large, cold and complex system like the LKAB mining site.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-230567
Date January 2014
CreatorsLindberg, Hanna
PublisherSveriges Lantbruksuniversitet, Instutionen för mikrobiologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC W, 1401-5765 ; 14021

Page generated in 0.0016 seconds