Return to search

Uma arquitetura de question-answering instanciada no domínio de doenças crônicas / A question-answering architecture instantiated on the domains of chronic disease

Nos ambientes médico e de saúde, especificamente no tratamento clínico do paciente, o papel da informação descrita nos prontuários médicos é registrar o estado de saúde do paciente e auxiliar os profissionais diretamente ligados ao tratamento. A investigação dessas informações de estado clínico em pesquisas científicas na área de biomedicina podem suportar o desenvolvimento de padrões de prevenção e tratamento de enfermidades. Porém, ler artigos científicos é uma tarefa que exige tempo e disposição, uma vez que realizar buscas por informações específicas não é uma tarefa simples e a área médica e de saúde está em constante atualização. Além disso, os profissionais desta área, em sua grande maioria, possuem uma rotina estressante, trabalhando em diversos empregos e atendendo muitos pacientes em um único dia. O objetivo deste projeto é o desenvolvimento de um Framework de Question Answering (QA) para suportar o desenvolvimento de sistemas de QA, que auxiliem profissionais da área da saúde na busca rápida por informações, especificamente, em epigenética e doenças crônicas. Durante o processo de construção do framework, estão sendo utilizados dois frameworks desenvolvidos anteriormente pelo grupo de pesquisa da mestranda: o SisViDAS e o FREDS, além de desenvolver os demais módulos de processamento de pergunta e de respostas. O QASF foi avaliado por meio de uma coleção de referências e medidas estatísticas de desempenho e os resultados apontam valores de precisão em torno de 0.7 quando a revocação era 0.3, para ambos o número de artigos recuperados e analisados eram 200. Levando em consideração que as perguntas inseridas no QASF são longas, com 70 termos por pergunta em média, e complexas, o QASF apresentou resultados satisfatórios. Este projeto pretende contribuir na diminuição do tempo gasto por profissionais da saúde na busca por informações de interesse, uma vez que sistemas de QA fornecem respostas diretas e precisas sobre uma pergunta feita pelo usuário / The medical record describes health conditions of patients helping experts to make decisions about the treatment. The biomedical scientific knowledge can improve the prevention and the treatment of diseases. However, the search for relevant knowledge may be a hard task because it is necessary time and the healthcare research is constantly updating. Many healthcare professionals have a stressful routine, because they work in different hospitals or medical offices, taking care many patients per day. The goal of this project is to design a Question Answering Framework to support faster and more precise searches for information in epigenetic, chronic disease and thyroid images. To develop the proposal, we are reusing two frameworks that have already developed: SisViDAS and FREDS. These two frameworks are being exploited to compose a document processing module. The other modules (question and answer processing) are being completely developed. The QASF was evaluated by a reference collection and performance measures. The results show 0.7 of precision and 0.3 of recall for two hundred articles retrieved. Considering that the questions inserted on the framework have an average of seventy terms, the QASF shows good results. This project intends to decrease search time once QA systems provide straight and precise answers in a process started by a user question in natural language

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10102016-121606
Date08 August 2016
CreatorsAlmansa, Luciana Farina
ContributorsMacedo, Alessandra Alaniz
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds