Obter uma representação sucinta e representativa de imagens médicas é um desafio que tem sido perseguido por pesquisadores da área de processamento de imagens médicas com o propósito de apoiar o diagnóstico auxiliado por computador (Computer Aided Diagnosis - CAD). Os sistemas CAD utilizam algoritmos de extração de características para representar imagens, assim, diferentes extratores podem ser avaliados. No entanto, as imagens médicas contêm estruturas internas que são importantes para a identificação de tecidos, órgãos, malformações ou doenças. É usual que um grande número de características sejam extraídas das imagens, porém esse fato que poderia ser benéfico, pode na realidade prejudicar o processo de indexação e recuperação das imagens com problemas como a maldição da dimensionalidade. Assim, precisa-se selecionar as características mais relevantes para tornar o processo mais eficiente e eficaz. Esse trabalho desenvolveu o método de seleção supervisionada de características FSCoMS (Feature Selection based on Compactness Measure from Scatterplots) para obter o ranking das características, contemplando assim, o que é necessário para o tipo de imagens médicas sob análise. Dessa forma, produziu-se vetores de características mais enxutos e eficientes para responder consultas por similaridade. Adicionalmente, foi desenvolvido o extrator de características k-Gabor que extrai características por níveis de cinza, ressaltando estruturas internas das imagens médicas. Os experimentos realizados foram feitos com quatro bases de imagens médicas do mundo real, onde o k-Gabor sobressai pelo desempenho na recuperação por similaridade de imagens médicas, enquanto o FSCoMS reduz a redundância das características para obter um vetor de características menor do que os métodos de seleção de características convencionais e ainda com um maior desempenho em recuperação de imagens / Obtaining a representative and succinct description of medical images is a challenge that has been pursued by researchers in the area of medical image processing to support Computer-Aided Diagnosis (CAD). CAD systems use feature extraction algorithms to represent images. Thus, different extractors can be evaluated. However, medical images contain important internal structures that allow identifying tissues, organs, deformations and diseases. It is usual that a large number of features are extracted the images. Nevertheless, what appears to be beneficial actually impairs the process of indexing and retrieval of images, revealing problems such as the curse of dimensionality. Thus, it is necessary to select the most relevant features to make the process more efficient and effective. This dissertation developed a supervised feature selection method called FSCoMS (Feature Selection based on Compactness Measure from Scatterplots) in order to obtain a ranking of features, suitable for medical image analysis. Our method FSCoMS had generated shorter and efficient feature vectors to answer similarity queries. Additionally, the k-Gabor feature extractor was developed, which extracts features by gray levels, highlighting internal structures of medical images. The experiments performed were performed on four real world medical datasets. Results have shown that the k-Gabor boosts the retrieval performance, whereas the FSCoMS reduces the subsets redundancy to produce a more compact feature vector than the conventional feature selection methods and even with a higher performance in image retrieval
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-20022013-095418 |
Date | 05 December 2012 |
Creators | Gabriel Efrain Humpire Mamani |
Contributors | Agma Juci Machado Traina, João do Espírito Santo Batista Neto, Homero Schiabel |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds