Return to search

Symétrie électrofaible à la lumière du LHC / Electroweak symmetry breaking in the light of LHC

Les extensions du Modèle Standard (MS) des particules sont maintenant dans une époque de développement très actif. Les motivations de l'introduction des dimensions supplémentaires sont basées d'une part sur la théorie des cordes qui nécessitent l'existence de nouvelles dimensions pour être cohérent. D'un autre côté ces théories peuvent potentiellement expliquer le problème de hiérarchie, le nombre de générations de fermions ou la stabilité du proton. La caractéristique commune de ces modèles est qu'ils fournissent une nouvelle particule neutre interagissant faiblement –un candidat idéal de la matière noire. Sa stabilité est préservée par la parité KK qui interdit les désintégrations du LKP en particules du MS. La géométrie de l'espace sous-jacent détermine le spectre de particules du modèle donc la masse et le spin du candidat DM, qui à leur tour jouent un rôle clé dans les études phénoménologiques. Nous présentons un modèle à deux dimensions supplémentaires universelles compactifiées sur le plan projectif réel. Cette géométrie particulière permet la définition des fermions chiraux et la stabilité de la matière noire neutre candidat dérive naturellement des propriétés intrinsèques de l'espace sans ajouter de nouvelles symétries ad hoc. Nous présentons le spectre de deux premiers niveaux KK à une boucle. Le spectre au sein de chaque niveau KK est fortement dégénéré ce qui fournit des signatures très intéressantes du modèle. Nous étudions la phénoménologie de la matière noire dans notre modèle pour limiter l'espace des paramètres en comparant nos résultats avec les données de WMAP et les expériences de détection directe. En utilisant les bornes obtenues, nous nous concentrons sur la phénoménologie LHC de notre modèle / The extra-dimensional extensions of the Standard Model of particles are now in a very active epoch of development. The motivations of introducing extra dimensions are based on one hand on string theories that require the existence of new dimensions to be consistent. On the other hand such theories can potentially explain the hierarchy problem, number of fermion generations, proton stability and other enigmas of the Standard Model. The common feature of these models is that they provide a new neutral weakly interacting particle - perfect candidate to the Dark Matter. Its stability is preserved by the so-called KK parity which prohibits the decays of the LKP into SM particles. The geometry of the underlying space determines the particle spectrum of the model, thus the mass and the spin of the DM candidate, which in turn plays the key role in the phenomenological studies We present a model with two universal extra dimensions compactified on a real projective plane. This particular geometry is chosen because chiral fermions can be defined on such orbifold and the stability of the neutral dark matter candidate arise naturally from the intrinsic geometrical properties of the space without adding any new symmetries ad hoc. We present the particle spectrum at loop order up to the second level in Kaluza-Klein expansion. The particularity of the spectrum is that the mass splittings within each KK level are highly degenerated providing a very interesting potential signatures in the LHC. We study the dark matter phenomenology in our model and constrain the parameter space by comparing our results with WMAP data and direct detection experiments. Using the obtained bounds we focus on the collider phenomenology of our model

Identiferoai:union.ndltd.org:theses.fr/2012LYO10136
Date05 October 2012
CreatorsKubik, Bogna
ContributorsLyon 1, Deandrea, Aldo, Cacciapaglia, Giacomo
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds