The interaction of embedded systems with their environments and their resource limitations make it important to take into account properties such as timing, security, and resource consumption in designing such systems. These so-called Extra-Functional Properties (EFPs) capture and describe the quality and characteristics of a system, and they need to be taken into account from early phases of development and throughout the system's lifecycle. An important challenge in this context is to ensure that the EFPs that are defined at early design phases are actually preserved throughout detailed design phases as well as during the execution of the system on its platform. In this thesis, we provide solutions to help with the preservation of EFPs; targeting both system design phases and system execution on the platform. Starting from requirements, which form the constraints of EFPs, we propose an approach for modeling Non-Functional Requirements (NFRs) and evaluating different design alternatives with respect to the satisfaction of the NFRs. Considering the relationship and trade-off among EFPs, an approach for balancing timing versus security properties is introduced. Our approach enables balancing in two ways: in a static way resulting in a fixed set of components in the design model that are analyzed and thus verified to be balanced with respect to the timing and security properties, and also in a dynamic way during the execution of the system through runtime adaptation. Considering the role of the platform in preservation of EFPs and mitigating possible violations of them, an approach is suggested to enrich the platform with necessary mechanisms to enable monitoring and enforcement of timing properties. In the thesis, we also identify and demonstrate the issues related to accuracy in monitoring EFPs, how accuracy can affect the decisions that are made based on the collected information, and propose a technique to tackle this problem. As another contribution, we also show how runtime monitoring information collected about EFPs can be used to fine-tune design models until a desired set of EFPs are achieved. We have also developed a testing framework which enables automatic generation of test cases in order verify the actual behavior of a system against its desired behavior. On a high level, the contributions of the thesis are thus twofold: proposing methods and techniques to 1) improve maintenance of EFPs within their correct range of values during system design, 2) identify and mitigate possible violations of EFPs at runtime. / CHESS / MBAT / ITS-EASY
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-27300 |
Date | January 2015 |
Creators | Saadatmand, Mehrdad |
Publisher | Mälardalens högskola, Inbyggda system, Västerås : Mälardalen University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Mälardalen University Press Dissertations, 1651-4238 ; 171 |
Page generated in 0.0024 seconds