A maioria dos artigos científicos estão disponíveis no formato PDF. Este padrão permite a geracão de metadados que são inclusos dentro do documento. Porém, muitos autores não definem esta informação, fazendo esse recurso inseguro ou incompleto. Este fato tem motivado pesquisa que busca extrair metadados automaticamente. A extração automática de metadados foi classificada como uma das tarefas mais desafiadoras na área de engenharia de documentos. Este trabalho propõe Artic, um método para extração de metadados de artigos científicos que aplica um modelo probabilístico em duas camadas baseado em Conditional Random Fields. A primeira camada visa identificar as secões principais com possíveis metadados. Já a segunda camada identifica, para cada secão, o metadado correspondente. Dado um PDF contendo um artigo científico, Artic extrai título, nome dos autores, emails, afiliações e informações sobre a conferência onde o paper foi publicado. Os experimentos usaram 100 artigos de conferências variadas. Os resultados superaram a solução estado-da-arte usada como baseline, atingindo uma precisão acima de 99%. / Most scientific articles are available in PDF format. The PDF standard allows the generation of metadata that is included within the document. However, many authors do not define this information, making this feature unreliable or incomplete. This fact has been motivating research which aims to extract metadata automatically. Automatic metadata extraction has been identified as one of the most challenging tasks in document engineering. This work proposes Artic, a method for metadata extraction from scientific papers which employs a two-layer probabilistic framework based on Conditional Random Fields. The first layer aims at identifying the main sections with metadata information, and the second layer finds, for each section, the corresponding metadata. Given a PDF file containing a scientific paper, Artic extracts the title, author names, emails, affiliations, and venue information. We report on experiments using 100 real papers from a variety of publishers. Our results outperformed the state-of-the-art system used as the baseline, achieving a precision of over 99%.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/108005 |
Date | January 2014 |
Creators | Souza, Alan Pinto |
Contributors | Heuser, Carlos Alberto, Moreira, Viviane Pereira |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds