Return to search

Elucidating the Role if Integrin-extracellular Matrix Protein Interactions in Regulating Osteoclast Activity

Millions of people around the world suffer from the debilitating effects of inflammatory bone diseases characterized by excessive bone loss due to an increase in osteoclast formation and activity. Osteoclasts are multinucleated cells responsible for bone resorption in health and disease. Arthritic joints also have elevated levels of extracellular matrix proteins affecting the disease progression. The interaction between osteoclasts and the external milieu comprised of extracellular matrix proteins through integrins is essential for modulating the formation and activity of osteoclasts. The focus of this thesis was to elucidate how the interaction between the extracellular matrix proteins and osteoclasts regulates osteoclast formation and activity and the role of alphavbeta3 in this process. In primary rabbit osteoclast cultures, blocking the integrin alphavbeta3 using Vitaxin, an anti-human alphavbeta3 antibody, decreased osteoclast resorption by decreasing osteoclast attachment. Vitaxin’s inhibitory effect on osteoclast attachment was enhanced when osteoclasts were pretreated with M-CSF, a growth factor known to induce an activated conformation of the integrin alphavbeta3. Using the RAW264.7 cell line, the effects of the matrix proteins fibronectin and vitronectin on osteoclast activity were compared to those of osteopontin. Both fibronectin and vitronectin decreased the number of osteoclasts formed compared to osteopontin. Fibronectin’s effect on osteoclastogenesis was through decreasing pre-osteoclast migration and/or fusion but not through inhibiting their recruitment. In contrast, fibronectin induced resorption through increasing resorptive activity per osteoclast in comparison to vitronectin and osteopontin. These stimulatory effects were accompanied by an increase in the pro-inflammatory cytokines nitric oxide and IL-1beta Crosstalk between the signalling pathways of nitric oxide and IL-1betawas suggested by the ability of the nitric oxide inhibitor to decrease the level of IL-1beta which occurred exclusively on fibronectin. Osteoclasts on fibronectin also had a compact morphology with the smallest planar area while vitronectin increased the percentage of osteoclast with migratory morphology and osteopontin induced osteoclast spreading. The increase in compact morphology on fibronectin was associated with a decrease in extracellular pH. Low extracellular pH was found to increase the total time osteoclasts spend in a compact phase. These results show that matrix proteins differentially regulate osteoclast formation, activity and morphology.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/29968
Date15 September 2011
CreatorsGramoun, Azza
ContributorsManolson, Morris Frank
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds