Les technologies de l'information et le succès des services associés (forums, sites spécialisés, etc) ont ouvert la voie à un mode d'expression massive d'opinions sur les sujets les plus variés (e-commerce, critiques artistiques, etc). Cette profusion d'opinions constitue un véritable eldorado pour l'internaute, mais peut rapidement le conduire à une situation d'indécision car,les avis déposés peuvent être fortement disparates voire contradictoires. Pour une gestion fiable et pertinente de l'information contenue dans ces avis, il est nécessaire de mettre en place des systèmes capables de traiter directement les opinions exprimées en langage naturel afin d'en contrôler la subjectivité et de gommer les effets de lissage des traitements statistiques. La plupart des systèmes dits de recommandation ne prennent pas en compte toute la richesse sémantique des critiques et leur associent souvent des systèmes d'évaluation qui nécessitent une implication conséquente et des compétences particulières chez l'internaute. Notre objectif est de minimiser l'intervention humaine dans le fonctionnement collaboratif des systèmes de recommandation en automatisant l'exploitation des données brutes que constituent les avis en langage naturel. Notre approche non supervisée de segmentation thématique extrait les sujets d'intérêt des critiques, puis notre technique d'analyse de sentiments calcule l'opinion exprimée sur ces critères. Ces méthodes d'extraction de connaissances combinées à des outils d'analyse multicritère adaptés à la fusion d'avis d'experts ouvrent la voie à des systèmes de recommandation pertinents, fiables et personnalisés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00771504 |
Date | 03 December 2012 |
Creators | Duthil, Benjamin |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds