The development of the vertebrate eye is tightly controlled by precise genetic regulations. From a single ocular primordium to bilateral eyes with complex structures and cell types, it requires intensive proliferation and migration for cells in both the ectoderm and mesoderm to accomplish ocular morphogenesis, and during this process cell differentiation and interaction takes place to establish the complex composition of ocular cell types and cellular connections. Genetic defects can lead to severe abnormalities in eye morphogenesis and cell differentiation during ocular development. A tremendous amount of work has been done to identify both intrinsic and extrinsic factors that regulate ocular development. However, much more work is needed to fully understand this complex process.
Sox4 is known as a transcription activator that regulates cell survival and differentiation in multiple embryonic tissues during development. Evidence of its requirement during ocular development has recently emerged, but the mechanism by which Sox4 regulates ocular development is far from elucidated. Chapter 1 of this dissertation provides an overview of different stages in embryonic eye development and known genetic interactions during each stage. It also reviews recent knowledge about SoxC proteins and their roles in ocular development. Chapter 2 presents data characterizing the expression profile of the zebrafish sox4 co-orthologs, sox4a and sox4b, in the developing eye. Additionally, it presents data from morpholino-mediated sox4 knockdown in zebrafish, which indicate that Sox4 deficiency leads to defects in choroid fissure closure through elevation in the Hedgehog (Hh) signaling pathway. Sox4 knockdown causes upregulation of the Hh ligand indian hedgehog b (ihhb), which alters the proximal-distal boundary of the optic vesicle and inhibits choroid fissure closure. Chapter 3 presents data reporting the generation of sox4 mutant zebrafish lines using the CRISPR/Cas9 genome editing system. Characterization of one sox4a maternal zygotic (MZ) mutant line confirms Sox4’s role in negative regulation of Hh signaling and reveals new evidence that maternal and zygotic sox4 are both critical for ocular development. Chapter 4 presents data demonstrating that sox4 is required for rod photoreceptor neurogenesis. Rod photoreceptor terminal differentiation is delayed in both sox4 morphants and sox4 CRISPR mutants, while rod progenitor and precursor cells are properly specified. In Chapter 5, the roles of Sox4 in regulating ocular development are summarized based on the results, and implications of the results are discussed to expand our understanding of the genetic regulation of ocular morphogenesis and retinal neurogenesis.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:biology_etds-1034 |
Date | 01 January 2016 |
Creators | Wen, Wen |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Biology |
Page generated in 0.0026 seconds