This study shows that mice homozygous for the disrupted renal sodium-phosphate (Na+-Pi) cotransporter, Npt2, (Npt2 KO) failed to show an age-dependent decrease in renal Na+-Pi cotransport or an adaptive increase in renal Na+-Pi cotransport in response to dietary Pi restriction. None of the other known renal Na+ -Pi cotransporters could compensate for the loss of Npt2. Additionally, Npt2 gene ablation resulted in a marked decrease in osteoclast number that persisted with age. Although mineral apposition rate was normal at 25- and 115-days of age in Npt2 KO mice, bone formation rate was increased at 115-days of age. These data demonstrate that Npt2 gene expression is necessary for an age-dependent decrease in renal Na+-Pi cotransport and for the renal adaptive response to dietary Pi deprivation, and that Npt2 expression is essential for normal osteoclast function and influences bone formation.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.30118 |
Date | January 1999 |
Creators | Hoag, Hannah M. |
Contributors | Tenenhouse, Harriet S. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Biology.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001737941, proquestno: MQ55066, Theses scanned by UMI/ProQuest. |
Page generated in 0.0017 seconds