Vibrations in machines increase friction on moving parts which cause chafing that will tear down the fabric of the machine components when given time, thus monitoring and analysis of machine vibrations are important for preventive maintenance. Vibration analysis utilizes time domain as well as frequency domain analysis for which there have been analog solutions for quite some time. This work has been about moving a predominantly analog mixed signal system onto an FPGA and making it mostly digital. Vibration analysis on an FPGA have its own challenges and benefits compared to other methods. The inherent parallelism of the FPGA makes it suitable for high performance signal analysis. This report shows through two proof-of-concept solutions that the translation of a predominantly analog system is viable, economic and can deliver improved performance. The two solutions have utilized two different units from Xilinx, the Spartan-6 FPGA and the Zynq-7000 system on chip FPGA. The solution implemented on Spartan-6 produces a result in 9.32 ms and the other implementation based on Zynq-7000 produces a result in 9.39 ms, which is more than a 10-fold increase in performance of the current system. The results obtained show that both solutions can perform the calculations for the proof of concept within 20% of the allotted time. Costs of both solutions as well as other qualities of each solution are presented in this paper.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-17488 |
Date | January 2012 |
Creators | Lindh, Fredrik, Wennerström, Jessica, Otnes, Thomas |
Publisher | Mälardalens högskola, Akademin för innovation, design och teknik, Mälardalens högskola, Akademin för innovation, design och teknik, Mälardalens högskola, Akademin för innovation, design och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds