Return to search

Deformation and shape of flexible, microscale helices in viscous flows / Déformation et forme d’hélices flexibles et micrométriques sous écoulement visqueux

Les interactions fluide-structure sont d'un grand intérêt en ingénierie et pour des applications industrielles et médicales. Comprendre les interactions entre des particules aux formes complexes et des écoulements peut mener à de nouveaux projets pour l'administration ciblée de médicaments, pour des micro capteurs de débit et à une meilleure compréhension du comportement des micro-organismes. Dans cette thèse, nous étudions l'interaction fluide-structure de particules chirales de taille microscopique à bas nombres de Reynolds. Les particules sont rigides et confinées dans une géométrie 2D ou flexibles avec une forme hélicoïdale. Combiner des techniques de microfabrication, comme des méthodes d'assemblage multi-échelles et la microfluidique, permet d'avoir un excellent contrôle à la fois sur les propriétés géométriques et mécaniques des fibres et aussi sur les caractéristiques de l'écoulement comme ses propriétés Newtoniennes et non Newtoniennes, sa vitesse et sa géométrie. Dans un premier temps, nous avons étudié des fibres rigides, 2D et asymétriques, i.e. des fibres en L. Les confinements latéral et transversal ont été étudiés tout comme la forme de la fibre. Lorsque la particule est transportée dans un écoulement visqueux, elle tourne jusqu'à atteindre une orientation d'équilibre. Dans cette orientation particulière, la fibre se décale vers les murs latéraux du canal. Une étude complète des trajectoires de la fibre a été réalisée et des comparaisons avec des particules symétriques ont été faites. Ce sujet de recherche pourrait aider à concevoir des dispositifs pour trier des particules à des fins médicales. Dans un second temps, nous avons étudié des fibres hélicoïdales flexibles de taille micrométrique. La dynamique de formation de l'hélice a été analysée. Les hélices se forment à partir de rubans droits 2D qui, de façon spontanée, s'enroulent quand ils sont libérés dans l'eau. La forme hélicoïdale est obtenue seulement quelques minutes après la libération des rubans mais l'hélice continue à rétrécir pendant plusieurs heures jusqu'à ce qu'elle atteigne une courbure préférentielle. Deux temps caractéristiques sont identifiés dans cette dynamique de formation. Un modèle a été développé pour comprendre le complexe équilibre entre les forces élastiques, de tension de surface et visqueuses aux temps courts. Après avoir analysé plusieurs hypothèses, comme l'impact d'une couche sacrificielle, une possible modification du module du matériau et la présence de fluage, l'évolution du rayon de l'hélice aux temps longs s'explique probablement par du fluage. La dynamique d'extension et de relaxation de la fibre flexible a aussi été étudiée dans des fluides Newtonien et non Newtonien. L'étude dans des solutions de polymères est pertinente et intéressante car la taille des micro hélices est comparable à celle des flagelles des micro-organismes et à celle de chaînes de polymères de grande masse moléculaire. Il s'agit donc d'un problème mutli-échelles complexe car la viscosité locale au niveau du ruban pourrait être différente de la viscosité globale de l'écoulement. / Fluid-structure interactions are of wide interest in engineering, industrial and medical applications. Understanding the interactions between complex shaped particles and flows might lead to new designs for targeted delivery, microflow sensors and to a better understanding of the behavior of microorganisms. In this thesis, we study the fluid-structure interaction of microscale chiral particles at low Reynolds numbers. The particles are rigid and confined in a 2D geometry or flexible with a helical shape. The combination of microfabrication techniques, such as multiscale assembly methods and microfluidics, enables to have a perfect control on both the geometrical and mechanical properties of the fibers and the flow features such as Newtonian or non Newtonian properties, the flow velocity and the flow geometry. First we studied asymmetric 2D rigid fibers, i.e. L-shaped fibers. Both lateral and transversal confinements have been investigated, as well as the shape of the fiber. When the particle is transported in viscous flows, it rotates until reaching an equilibrium orientation. In this specific orientation, the fiber drifts towards the lateral walls of the channel. A full investigation on the trajectories of the fiber has been performed and comparisons with symmetric particles have been done. Such research may help design devices to sort particles for medical purposes. Secondly we studied flexible microscale helical fibers. The dynamics of the helix formation has been investigated. The helices are formed from straight 2D ribbons, which spontaneously coil when released in water. The helical shape is reached only several minutes after the release but the helix keeps shrinking during several hours until reaching a preferred curvature. Two different timescales are identified in this formation dynamics. A model has been developed to understand the complex balance between elastic, surface tension and viscous forces at short times. After investigating several assumptions such as the impact of a sacrificial layer, a possible change in the modulus of the material and a creep behavior, the evolution of the radius at long times is most likely explained by creep. The extension and relaxation dynamics of the flexible fiber has also been studied in Newtonian and non Newtonian fluids. The study in polymer solutions is relevant and interesting because the size of the microhelix is comparable to the flagella of microorganisms and to the chains of high molecular weight polymers. Complex multiscale problems are then involved as the local viscosity at the scale of the ribbon might differ from the global viscosity at the scale of the flow.

Identiferoai:union.ndltd.org:theses.fr/2018USPCC189
Date23 October 2018
CreatorsDaieff, Marine
ContributorsSorbonne Paris Cité, Lindner, Anke, Du Roure, Olivia
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0018 seconds