Return to search

Calibração de modelo numérico para simulação do comportamento mecânico de cabos poliméricos reforçados por fibra de carbono

Cabos são componentes estruturais utilizados desde a antiguidade, principalmente em aplicações onde o carregamento axial é elevado, enquanto a flexão e torção são relativamente baixos. Exemplos de aplicação atuais incluem sustentação de pontes, ancoragem de plataformas offshore, elevadores, transporte em minas, guindastes, entre outros. O estudo de seu comportamento mecânico envolve fatores que agregam considerável complexidade na elaboração de modelos numéricos ou analíticos que representem seu comportamento. Dentre esses fatores se destacam as tensões de contato que surgem entre as pernas do cabo à medida que deslizam em relação às outras, a geometria helicoidal, a rotação das pernas em torno da alma do cabo ao ser estendido (i.e., variação do ângulo da hélice do cabo) além de, no caso de cabos compósitos, um comportamento anisotrópico. Tendo em vista a indisponibilidade de uma solução analítica completa para cabos compósitos, buscou-se através do presente trabalho calibrar um modelo numérico elaborado em software comercial de elementos finitos, contemplando fatores comumente desprezados pelos modelos analíticos simplificados. Foram executados ensaios de tração na alma de cabos de compósitos com fibras de carbono de geometria 1×10 (nove fios envolvendo a alma) para determinar o módulo de elasticidade longitudinal e utilizada a teoria da micromecânica para avaliar as demais constantes de engenharia. O cabo foi modelado em tração, onde uma extremidade foi engastada e a outra teve rotação restrita e deslocamento longitudinal livre, e também em flexão em quatro pontos, deixando uma das extremidades com rotação livre e a outra com rotação e deslocamento longitudinal livre, com os demais graus de liberdade restritos. Em seguida foi conduzida uma análise de sensibilidade das principais variáveis que governam o problema, de onde se concluiu que o passo do cabo, o diâmetro de seus fios e o módulo de elasticidade longitudinal são as mais relevantes. O desvio da deformação de ruptura em tração e do deslocamento em flexão obtidos numericamente em relação aos dados experimentais obtidos foi de 10,8 % e 14,6 %, respectivamente. Após o processo de calibração, que fez uso do método de Programação Linear Sequencial para buscar o valor das variáveis de projeto que minimizassem o erro entre os dados experimentais e numéricos, o desvio encontrado reduziu para 2,4 % e 0,1 %, respectivamente. / Wire ropes have been used since ancient times, especially in applications were the axial stress is high and flexural and torsional stresses are relatively low. Current application include bridges, offshore platforms, elevators, mine hoisting, cranes, among others. Study of their mechanical behavior encompasses many factors, bringing considerable complexity in the construction of numerical or analytical models that represent their behavior, including contact stresses between rods as they slide past one another, helical geometry, rotation of wires around the core when in extension (i.e. variation in helix angle) and also, for composite cables, the anisotropic behavior. In view of the unavailability of a comprehensive analytical solution, this work focuses on the calibration of a numerical model built on a finite element software incorporating factors commonly neglected by simplified analytical approaches. Tensile tests were performed on the core of carbon fiber composite cables, 1×10 geometry (nine rods surrounding the core), to evaluate its longitudinal elastic modulus and employed micromechanics theory to obtain the remaining engineering constants. The cable was then modeled under tensile stress, where one end was fully constrained and the other could not rotate but was free to move in the longitudinal direction. Under 4-point bending, where one end was free only to rotate, while the other was free to move in longitudinal direction and to rotate, whereas the remaining degrees of freedom were constrained. After that, sensitivity analysis of the main variables governing the problem was conducted, concluding that cable pitch, rod diameter and longitudinal elastic modulus of the rods are the most relevant parameters. Deviation between ultimate strain under tensile stress and displacement under bending numerically obtained with those from experiments were 10.8 % and 14.6 %, respectively. After the calibration process, which used Sequential Linear Programing to search for the design variables values that minimized error between numerical and experimental data, the finite element model could reproduce the tensile stress and bending behavior with deviations of 2.4 % and 0.1 %, respectively.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/132637
Date January 2015
CreatorsMenezes, Eduardo Antonio Wink
ContributorsAmico, Sandro Campos, Marczak, Rogerio Jose
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0034 seconds