Return to search

Soot Measurements in High-pressure Diffusion Flames of Gaseous and Liquid Fuels

Methane-air, ethane-air, and n-heptane-air over-ventilated co-flow laminar diffusion flames were studied up to pressures of 2.03, 1.52, and 0.51 MPa, respectively, to determine the effect of pressure on flame shape, soot concentration, and temperature. A spectral soot emission optical diagnostic method was used to obtain the spatially resolved soot formation and temperature data. In all cases, soot formation was enhanced by pressure, but the pressure sensitivity decreased as pressure was increased. The maximum fuel carbon conversion to soot, ηmax, was approximated by a power law dependence with the pressure exponent of 0.92 between 0.51 and 1.01 MPa, and 0.68 between 1.01 and 2.03 MPa with ηmax=9.5% at 2.03 MPa for methane-air flames. For ethane-air flames, the pressure exponent was 1.57 between 0.20 and 0.51 MPa, 1.08 between 0.51 and 1.01 MPa, and 0.58 between 1.01 and 1.52 MPa where ηmax=23% at 1.52 MPa. For nitrogen-diluted n-heptane-air flames, ηmax=6.5% at 0.51 MPa.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/27342
Date30 May 2011
CreatorsIntasopa, Gorngrit
ContributorsGulder, Omer L.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds