This study showed that hydrodynamic particle breakage had potential as a method to help improve the disinfection of wastewater effluents. The physicochemical properties of flocs from four distinct effluents sources (combined sewer overflow, settled combined sewer overflow, primary effluent, and final effluent) were compared before and after hydrodynamic treatment. The use of hydrodynamic force to cause floc breakage was shown to be effective, though variable, across all source types. This variation in floc breakage did not have a significant impact on the UV disinfection achieved, as the UV dose kinetics were similar across samples from the same source type. The results of this study demonstrate how the physicochemical properties of floc are affected when exposed to shear force. These observations further the understanding of floc composition and behaviour when shear forces are applied while also providing evidence to indicate this process improves the performance of UV disinfection technology.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/4948 |
Date | 20 December 2012 |
Creators | Best, Robert |
Contributors | Liss, Steven, Habash, Marc |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ |
Page generated in 0.002 seconds