Digital Signal Processors (DSPs) have been an important component of all signal processing systems for over two decades now. Some of the
obvious advantages of digital signal processing are the flexibility to make specific changes in the processing functions through hardware
or software programming, faster processing speeds of the DSPs, cheaper storage, and retrieval of digital information and lower sensitivity
to electrical noise.
The explosive growth of wireless and signal processing applications has resulted in an increasing demand for such systems with low cost,
low power consumption, and small form factors. With high--level of integration to single--chip systems, power consumption becomes a very
important concern to be addressed. Intermediate--Frequency (IF) band signal processing requires the use of an array of DSPs, operating in
parallel, to meet the speed requirements. This is a power intensive approach and makes use of certain communication schemes impractical in applications where power budget is limited. The front--end ADC and back--end DAC converters required in these systems become expensive when the signal is of wideband nature and a greater resolution is required.
We present techniques to use floating--gate devices to implement signal processing systems in the analog domain in a power efficient and
cost effective manner. Use of floating--gate devices mitigates key limitations in analog signal processing such as the lack of flexibility
to specific changes in processing functions and the lack of programmability. This will impact the way a variety of signal processing systems are designed currently. It also enables array signal processing to be done in an area efficient manner. As will be shown through sample applications, this methodology promises to replace expensive wideband ADC and DAC converters with relatively easy to implement baseband data converters and an array of power intensive high speed DSPs with baseband DSPs. This approach is especially beneficial for portable systems where a lot of applications are running from a single battery.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/6823 |
Date | 18 January 2005 |
Creators | Chawla, Ravi |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 2790951 bytes, application/pdf |
Page generated in 0.0017 seconds