Return to search

A Power-efficient Radio Frequency Energy-harvesting Circuit

This work aims to demonstrate the design and simulation of a Radio Frequency (RF) energy-harvesting circuit, from receiving antenna to the point of charge collection. The circuit employs a custom-designed antenna based around Koch fractal loops, selected for their small physical size, good multiband behaviour and ease of size scalability, as well as a power-efficient seven-element Greinacher rectification section designed to charge a super-capacitor or rechargeable battery for later use. Multiple frequency bands are tapped for energy and this aspect of the implementation was one on the main focus points. The bands targeted for harvesting in this thesis will be those that are the most readily available to the general Canadian population. These include Wi-Fi hotspots (and other 2.4GHz sources), as well as cellular (850MHz band), Personal Communications Services (1900MHz band) and WiMax (2.3GHz) network transmitters.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./23627
Date10 January 2013
CreatorsKhoury, Philip
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0018 seconds