Return to search

User-centred video abstraction

The rapid growth of digital video content in recent years has imposed the need for the development of technologies with the capability to produce condensed but semantically rich versions of the input video stream in an effective manner. Consequently, the topic of Video Summarisation is becoming increasingly popular in multimedia community and numerous video abstraction approaches have been proposed accordingly. These recommended techniques can be divided into two major categories of automatic and semi-automatic in accordance with the required level of human intervention in summarisation process. The fully-automated methods mainly adopt the low-level visual, aural and textual features alongside the mathematical and statistical algorithms in furtherance to extract the most significant segments of original video. However, the effectiveness of this type of techniques is restricted by a number of factors such as domain-dependency, computational expenses and the inability to understand the semantics of videos from low-level features. The second category of techniques however, attempts to alleviate the quality of summaries by involving humans in the abstraction process to bridge the semantic gap. Nonetheless, a single user’s subjectivity and other external contributing factors such as distraction will potentially deteriorate the performance of this group of approaches. Accordingly, in this thesis we have focused on the development of three user-centred effective video summarisation techniques that could be applied to different video categories and generate satisfactory results. According to our first proposed approach, a novel mechanism for a user-centred video summarisation has been presented for the scenarios in which multiple actors are employed in the video summarisation process in order to minimise the negative effects of sole user adoption. Based on our recommended algorithm, the video frames were initially scored by a group of video annotators ‘on the fly’. This was followed by averaging these assigned scores in order to generate a singular saliency score for each video frame and, finally, the highest scored video frames alongside the corresponding audio and textual contents were extracted to be included into the final summary. The effectiveness of our approach has been assessed by comparing the video summaries generated based on our approach against the results obtained from three existing automatic summarisation tools that adopt different modalities for abstraction purposes. The experimental results indicated that our proposed method is capable of delivering remarkable outcomes in terms of Overall Satisfaction and Precision with an acceptable Recall rate, indicating the usefulness of involving user input in the video summarisation process. In an attempt to provide a better user experience, we have proposed our personalised video summarisation method with an ability to customise the generated summaries in accordance with the viewers’ preferences. Accordingly, the end-user’s priority levels towards different video scenes were captured and utilised for updating the average scores previously assigned by the video annotators. Finally, our earlier proposed summarisation method was adopted to extract the most significant audio-visual content of the video. Experimental results indicated the capability of this approach to deliver superior outcomes compared with our previously proposed method and the three other automatic summarisation tools. Finally, we have attempted to reduce the required level of audience involvement for personalisation purposes by proposing a new method for producing personalised video summaries. Accordingly, SIFT visual features were adopted to identify the video scenes’ semantic categories. Fusing this retrieved data with pre-built users’ profiles, personalised video abstracts can be created. Experimental results showed the effectiveness of this method in delivering superior outcomes comparing to our previously recommended algorithm and the three other automatic summarisation techniques.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:655888
Date January 2015
CreatorsDarabi, Kaveh
ContributorsGhinea, G.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/11022

Page generated in 0.0023 seconds