1 This thesis concerns separation axioms in point-free topology. We introduce a notion of weak inclusion, which is a relation on a frame that is weaker than the relation ≤. Weak inclusions provide a uniform way to work with standard separation axioms such as subfitness, fitness, and regularity. Proofs using weak inclusions often bring new insight into the nature of the axioms. We focus on results related to the axiom of subfitness. We study a sublocale which is defined as the intersection of all the codense sublocales of a frame. We show that it need not be subfit. For spacial frames, it need not be spacial.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:448446 |
Date | January 2021 |
Creators | Novák, Jan |
Contributors | Pultr, Aleš, Klazar, Martin |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds