Return to search

Efeitos termoelétricos em sistemas nanoscópicos / Thermoelectric effects in nanoscopic

Efeitos termoelétricos descrevem o surgimento de campos elétricos em função de gradientes de temperatura e vice-versa. Neste trabalho investigamos as propriedades termoelétricas de materiais de baixa dimensionalidade e nanoestruturas através de cálculos de primeiros princípios das propriedades de transporte destes sistemas, usando o código TRANSAMPA, que é baseado em funções de Green fora do equilíbrio e do código SIESTA, baseado em teoria do funcional da densidade. Inicialmente estudamos nanofitas de grafeno e como estas são alteradas pela presença de impurezas substitucionais de Boro e Nitrogênio. Entre os principais resultados, mostramos que fitas na configuração ferromagnética apresentam efeito Seebeck dependente do spin, que pode ser ajustado por efeito de campo. A seguir, vemos que o coeficiente Seebeck (S) em bicamadas de grafeno pode ser ajustado por potenciais de gate, de forma a escolher os portadores de carga, atingindo S =_250 _V/K. Também estudamos a dependência de S com a temperatura (T) e o tamanho do gate, calculamos a condutividade térmica por dinâmica molecular e a eficiência termoelétrica (ZT). Na seqüencia, mostramos que grafeno dopado com Mn mostra caloritrônica de spin ajustável via gate e como a termocorrente varia com T e _T. Finalmente, calculamos as propriedades termoelétrica de uma junção molecular Au-BDT-Au e como elas variam em função do alongamento da junção. Também propomos um esquema geral para maximizar ZT de junções moleculares em geral. / Thermoelectric effects describe how electric fields arise in response to temperature gradients and vice versa. In this thesis we investigate the thermoelectric properties of low-dimensional materials and nanostructures theoretically. We perform ab initio calculations of the electronic transport properties using the TRANSAMPA code, based in nonequilibrium Greens functions, and the SIESTA code, based in density functional theory. First, we study graphene nanoribbons and how their properties are altered by substitutional impurities. Among our main results for this system, we show that ribbons in the ferromagnetic configuration present spin-dependent Seebeck effect, which can be tuned by a field effect. We show that the Seebeck coefficient (S) of bilayer graphene is highly tunable by a gate potential, with ambipolar behavior, reaching S = _250 _V/K. We also study how S varies with temperature (T) and gate length. We calculate its thermal conductivity by molecular dynamics, and its thermoelectric efficiency (ZT ). Then, we show that Mn doped graphene features a gate-tunable spin-dependent S, which is robust under changes in T and _T, rendering this material suitable for spin caloritronics. Finally, we calculate how the thermoelectric properties of an Au-BDT-Au molecular junction vary with mechanical stretching, and propose a general recipe to improve ZT in molecular junctions in general.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22092014-130537
Date13 December 2013
CreatorsRiera Junior, Alberto Torres
ContributorsSilva, Antonio Jose Roque da
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds