Stringent government mandates for the fuel economy and emissions of light-duty consumer vehicles have forced manufacturers to focus on improvements in these areas. Increased consumer pressure has also shifted the automobile market towards higher efficiency vehicles. This study investigates the use of intelligent engine peripheral control to improve fuel efficiency and reduce vehicle emissions. The conventional automotive alternator control strategy contributes to higher overall vehicle losses and increased fuel consumption through indiscriminate loading of the engine. The improved method focuses on the selective reduction of engine loading and the recapture of vehicle energy during braking using intelligent control of the alternator system. The concept was demonstrated on the Mississippi State University Challenge X hybrid vehicle. The fuel economy and NOx emissions of the vehicle were improved by 6.6% and 10.5% respectively over the drive cycle developed by the 2006 Mississippi State University Challenge X team to evaluate emissions.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3769 |
Date | 13 December 2008 |
Creators | Phillips, Stephen Gordon |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0015 seconds