The tube hydroforming (THF) technology has been widely used in manufacturing the lightweight and high strength components. The success of THF is largely dependent on the selection of the loading paths: internal pressure vs. time and axial feeding vs. time. The Finite element method is used to simulate the forming result of different loading paths and reduce the cost of die-testing. T-shape tube hydroforming is investigated adaptive simulation by combining FEM code LS-DYNA with fuzzy logic controller subroutine is proposed. During the simulation process, subroutines can adjust the loading paths according to the values of the minimum tube thickness and its variance. Then, the purpose of better thickness distribution of the formed tube at the side branch is achieved. Comparing with other linear loading paths, this adaptive control method got better results. In experiments, the validity of LS-DYNA applied in THF process is verified and the experimental results by adaptive simulation are better than those by the linear loading paths.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0903103-103447 |
Date | 03 September 2003 |
Creators | Wu, Hung-Chen |
Contributors | none, none, none, none, none |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0903103-103447 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.002 seconds