Return to search

Signal processing techniques for optical fiber sensors using white light interferometry

Conventional fiber optic interferometric sensors employing a monochromatic source prove to be inadequate for applications requiring absolute, real-time value of magnitude and direction of the applied perturbation. This limitation can be overcome by using a broadband light source to extract unambiguous information from the sensor in the wavelength domain. Several variations in the signal processing techniques for white light interferometry are discussed and compared in terms of resolution, bandwidth and cost. A detailed analysis is made of the principle of operation and basic features of the commercially available absolute sensing system. This compact system is self calibrating, has a 100 micro-strain Ole) strain and 2°C temperature resolution and is ideal for applications in environments where the parameter to be measured is static or quasi-static. High finesse Fabry-Perot cavities are employed to obtain almost an order of magnitude sensitivity improvement over conventional low finesse cavities.

The principle of white light interferometry is extended to absolute axial stain and temperature sensing in two-mode, elliptical-core fibers. Other novel applications, such as to operation of photo induced refractive index gratings and fiber characterization are proposed. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/44866
Date19 September 2009
CreatorsBhatia, Vikram
ContributorsElectrical Engineering, Murphy, Kent A., Claus, Richard O., Jacobs, Ira, Wang, Anbo
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Text
Formatix, 81 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 29815438, LD5655.V855_1993.B527.pdf

Page generated in 0.0025 seconds