Return to search

Genome-wide modeling of mutation spectra of human cancer-risk agents using experimental systems / Modélisation à l'échelle du génome des spectres de mutations des agents de risque de cancer humain en employant des systèmes expérimentaux

Les génomes du cancer présentent une mosaïque de types de mutations. Trente signatures mutationnelles ont été identifiées à partir d'un grand nombre de tumeurs humaines primaires. Déchiffrer l'origine de ces signatures mutationnelles pourrait aider à identifier les causes du cancer humain. Environ 40% des signatures décrites sont d'origine inconnue, soulignant la nécessité de modèles expérimentaux contrôlés pour étudier l'origine de ces signatures. Au cours de mon travail de doctorat, j'ai caractérisé et utilisé des modèles in vitro et in vivo d'exposition aux cancérogènes, caractériser les signatures mutationnelles au niveau de génome entier de plusieurs composés cancérogènes pour lesquels le spectre de mutations n'était pas connu ou controversé. Tout d'abord, les conditions de cytotoxicités et genotoxicités pour chaque composé ont été établies et la formation d'adduits d'ADN a été évaluée. Suite au séquençage du gène TP53, on a effectué un séquençage au niveau du génome des clones MEF immortalisés dérivés de l'exposition à l'acrylamide, au glycidamide et à l'ochratoxine A. Le travail suggère une nouvelle signature mutationnelle unique pour l'acrylamide et médiée par son métabolite actif, le glycidamide. En fait, le motif des mutations de glycidamide, correspondant au profil de sa signature mutationnelle, a récapitulé les types de mutations attendus en fonction de l'analyse des adduits d'ADN. En outre, une analyse intégrée utilisant des modèles in vitro et in vivo suggère un manque de mutagénicité directe pour l'OTA avec une contribution potentielle d'un mode d'action lié à la production des radicaux libres à la signature mutationnelle OTA dans les MEF. Cette stratégie expérimentale simple et puissante peut faciliter l'interprétation des empreintes de mutations identifiées dans les tumeurs humaines, élucider l'étiologie du cancer et finalement soutenir la classification des cancers du CIRC en fournissant des preuves mécanistes / Cancer genomes harbour a mosaic of mutation patterns from which thirty mutational signatures have been identified, each attributable to a particular known or yet undetermined causal process. Deciphering the origins of these global mutational signatures in full could help identify the causes of human cancer, especially for about 40% of those signatures identified thus far that remain without a known etiological factor. Thus, well-controlled experimental exposure models can be used to assign particular mutational signatures to various mutagenic factors.During the time frame of my PhD work, I characterized and employed innovative in vitro and in vivo models of carcinogen exposure, namely, primary Hupki MEF cells, HepaRG and lymphoblastoid cell lines as well as rodent tumors. The cytotoxic and genotoxic conditions for each tested exposure compound were established and DNA adduct formation was assessed in select cases. Following a pre-screen by TP53 gene sequencing, genome-wide sequencing of immortalized Hupki MEF clones derived from exposure to acrylamide, glycidamide and ochratoxin A was performed, alongside whole genome sequencing of ochratoxin A induced rat renal tumors. The results reveal a novel mutational signature of acrylamide mediated by its active metabolite, glycidamide, a pattern that can be explained by the parallel analysis of individual glycidamide-DNA adducts. In addition, an integrative mutation analysis using in vitro and in vivo models suggests a lack of direct mutagenicity for OTA and possible indirect effects due to the ROS-mediated mode-of-action in MEF cells. The presented robust experimental strategy can facilitate the interpretation of mutation fingerprints identified in human tumors, thereby elucidating cancer etiology, elucidating the relationship between mutagenesis and carcinogenesis and ultimately providing mechanistic evidence for IARC’s carcinogen classification

Identiferoai:union.ndltd.org:theses.fr/2017LYSE1278
Date30 November 2017
CreatorsZhivagui, Maria
ContributorsLyon, McKay, James, Zavadil, Jiri, Korenjak, Michael
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0039 seconds