Aux énergies assez hautes, les processus de QCD peuvent être factorisés en une partie dure, qui peut être calculée en utilisant les méthodes perturbatives des diagrammes de Feynman grâce à la petite valeur de la constante de couplage de l'interaction forte, et une partie non-perturbative qui doit être extraite de données expérimentales, modélisées ou calculées avec d'autres méthodes comme par exemple la QCD sur réseau. Cependant la petite valeur de la constante de couplage dans la partie perturbative peut être compensée par des grands logarithmes émergeant de l'annulation de divergences molles ou colinéaires, ou de la présence d'échelles cinématiques multiples. De telles contributions doivent être resommées, ce qui mène à l'équation d'évolution DGLAP aux énergies modérées et aux équations BFKL et B-JIMWLK dans la limite des hautes énergies. Pour les énergies les plus grandes des effets de recombinaison de gluons amènent à la saturation, qui peut être décrite par le formalisme du CGC ou des ondes de choc. Dans cette thèse, nous nous proposons d'étudier certains processus exclusifs en QCD perturbative afin d'obtenir une meilleure description de la factorisation et des effets de resommation et de saturation. Dans un premier temps nous faisons le premier calcul d'une quantité exclusive au premier ordre sous-dominant (NLO) dans le contexte du formalisme des ondes de choc de QCD. Nous calculons l'amplitude NLO pour la production diffractive ouverte d'une paire quark-antiquark, puis nous parvenons à construire une section efficace finie à l'aide de cette amplitude en étudiant la production diffractive exclusive de deux jets vers l'avant. Des analyses précises phénoménologiques et expérimentales de ce processus devraient améliorer notre compréhension de la resommation à haute énergie grâce à la présence d'un Pomeron échangé en diffraction, ce qui est naturellement décrit par la resommation de logarithmes découlant de la divergence molle de la QCD à haute énergie. Notre résultat reste valable quand l'énergie au centre de masse devient proche de l'échelle de saturation ou lorsque la diffraction a lieu sur une cible dense donc il peut être utilisé pour l'étude des effets de saturation. Dans un deuxième temps, nous montrons que l'étude expérimentale de la photoproduction d'un méson léger et d'un photon à énergies modérées devrait constituer un bon moyen d'appréhender les Distributions de Parton Généralisées (GPDs), l'une des généralisations des blocs non perturbatifs en factorisation collinéaire. En principe une telle étude donnerait accès à la fois aux GPDs conservant l'hélicité ou la renversant. Nous donnons des prédictions numériques pour ce processus à JLAB@12GeV. / At high enough energies, QCD processes can be factorized into a hard part, which can be computed by using the smallness of the strong coupling to apply the perturbative Feynman diagram method, and a non-perturbative part which has to be fitted to experimental data, modeled or computed using other tools like for example lattice QCD. However the smallness of the strong coupling in the perturbative part can be compensated by large logarithms which arise from the cancellation of soft or collinear divergences, or by the presence of multiple kinematic scales. Such logarithmically-enhanced contributions must be resummed, leading to the DGLAP evolution at moderate energies and to the BFKL or B-JIMWLK equation in the high energy limit. For the largest energies gluon recombination effects lead to saturation, which can be described in the color glass condensate (CGC) or shockwave formalism. In this thesis, we propose to study several exclusive perturbative QCD processes in order to get a better understanding of factorization, resummation and saturation effects. In the first part we perform the first computation of an exclusive quantity at Next-to-Leading-Order (NLO) accuracy using the QCD shockwave formalism. We calculate the NLO amplitude for the diffractive production of an open quark-antiquark pair, then we manage to construct a finite cross section using this amplitude by studying the exclusive diffractive production of a dijet. Precise phenomenological and experimental analysis of this process should give a great insight on high energy resummation due to the exchange of a Pomeron in diffraction, which is naturally described by the resummation of logarithms emerging from the soft divergences of high energy QCD. Our result holds as the center of mass energy grows towards the saturation scale or for diffraction off a dense target so one could use it to study saturation effects. In the second part we show how the experimental study of the photoproduction of a light meson and a photon at moderate energy should be a good probe for Generalized Parton Distributions (GPDs), one of the generalizations of the non-perturbative building blocks in collinear factorization. In principle such a study would give access to both helicity-conserving and helicity-flip GPDs. We give numerical predictions for this process at JLAB@12GeV.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLS280 |
Date | 23 September 2016 |
Creators | Boussarie, Renaud |
Contributors | Université Paris-Saclay (ComUE), Wallon, Samuel, Szymanowski, Lech |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0028 seconds