Return to search

Evaluation of hydrogen as energy source for biological sulphate removal in industrial wastewaters

Thesis (MSc)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: Biological removal of sulphate from wastewater can be achieved by using a gas mixture
consisting of 80% hydrogen and 20% carbon dioxide as energy and carbon sources. A novel
reactor, including a venturi device for optimal hydrogen gas-liquid contact, and geotextile for
immobilisation of the sulphate reducing bacterial community, was introduced. Efficient,
relatively stable sulphate removal was obtained when the reactor was operated in continuous
mode. The maximum sulphate removal rate obtained when the reactor was 8% packed with
geotextile, was 1 g S04/(L.d) and 4 g S04/(L.d) when the reactor was 80% packed with
geotextile. Kinetic batch studies showed that the highest sulphate removal rates were
obtained at 29.5 °C; a pH of 7.5; initial sulphate concentration of 4000 mg/L; initial alkalinity
of 1600 mg/L; cobalt concentration of 3 mg/L and when excess hydrogen gas was fed
compared to what is stoichiometrically required (900 ml/min). Nickel addition showed
inhibition at increased concentrations (>3 mg/L).
The biofilm structure was observed on the geotextile with electron microscopy, while the
viability of the biofilm was indicated with fluorescence microscopy. These observations
indicated the suitability of the geotextile as a support material for biofilm formation in the
sulphate reducing system. The stability of the sulphate reducing community was analysed,
using the T-RFLP protocol. It was shown that the composition of the community changed
after a period of 3 months, when the reactor was subjected to environmental changes. The
reactor was also observed to be more efficient in terms of sulphate removal after the
environmental changes, of which the temperature change from an average of 39 to 29.5 °C
was the most prominent. Subsequently, it was speculated that the population shift was in
favour of a more efficient system for sulphate removal. A dynamic, viable, mesophilic
sulphate reducing community was therefore observed on the geotextile support, responsible
for successful sulphate removal in a novel venturi-reactor.
Defining optimal operating conditions, and a knowledge of biofilm structure and composition
may contribute to the successful implementation of the biological sulphate removal
component of the integrated chemical-biological process for the treatment of industrial
wastewater, when hydrogen and carbon dioxide are supplied as the energy and carbon
sources, respectively. / AFRIKAANSE OPSOMMING: Ongewenste industriële afval-water kan biologies behandel word deur 'n gasmengsel van 80%
waterstof en 20% koolstofdioksied te gebruik vir sulfaat verwydering. 'n Reaktor wat 'n
venturi apparaat bevat vir optimale waterstofgas-vloeistof kontak, asook geotekstiel vir die
immobilisasie van die bakteriële sulfaatverwyderende gemeenskap, is bekend gestel.
Effektiewe, relatief stabiele sulfaatverwydering is waargeneem sodra die reaktor op 'n
kontinue basis gevoer is. Die optimale sulfaat verwyderingstempo wat bereik is as die reaktor
8% met geotekstiel gevul was, was 1 g S04/(L.d) en 4 g S04/(L.d) wanneer die reaktor 80%
met geotekstiel gevul was. Kinetiese groepstudies het getoon dat die beste
sulfaatverwydering bereik is by 'n gemiddelde temperatuur van 29.5 °C; pH van 7.5;
aanvanklike sulfaatkonsentrasie van 4000 mg/L; aanvanklike sulfied konsentrasie van 268
mg/L; aanvanklike alkaliniteit van 1600 mg/L; kobalt konsentrasie van 3 mg/L, asook
wanneer 'n oormaat waterstofgas gevoer is (900 ml/min), in vergelyking met wat
stoichiometries benodig word. 'n Verhoogde byvoeging van nikkel by die voerwater (3
mg/L), het tekens van inhibisie getoon.
Die biofilm struktuur is waargeneem op die geotekstiel met behulp van 'n
elektronrnikroskoop, terwyl die lewensvatbaarheid van die biofilm aangedui is met behulp
van fluoressensie mikroskopie. Hiermee is die bruikbaarheid van geotekstiel as 'n
ondersteunings-matriks bevestig. Die stabiliteit van die sulfaatverwyderende gemeenskap is
ondersoek deur die T-RFLP protokol te gebruik. Hiermee is aangedui dat die samestelling
van die gemeenskap verander het na die 3 maande toets periode, toe die reaktor onderhewig
was aan omgewings veranderinge. Die reaktor het ook 'n verbetering in sy
sulfaatverwyderings vermoë getoon na hierdie tydperk van omgewingsveranderinge, waarvan
'n temperatuur verandering vanaf 'n gemiddeld van 39 na 29.5 °C die prominentste was. Dit
is dus gespekuleer dat die populasie verskuiwing ten gunste was van 'n beter sisteem vir
sulfaatverwydering. 'n Dinamiese, lewensvatbare, mesofiliese sulfaatreduserende
gemeenskap, verantwoordelik vir die sulfaatverwydering in die venturi-reaktor, is dus
waargeneem op die geotekstiel as 'n ondersteuningsmatriks.
Met hierdie evaluasie kan die insig wat verkry is in die reaktor samestelling en die optimale
kondisies vir die reaktor werking, bydra tot die suksesvolle implementasie van die biologiese
komponent, in die geïntegreerde chemies-biologiese proses vir die behandeling van industriële afval water, wanneer 80% waterstof en 20% koolstofdioksied gas as energie en
koolstofbron respektiewelik, gebruik word.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/50344
Date03 1900
CreatorsEloff, Estie
ContributorsWolfaardt, G. M., Maree, J. P., Stellenbosch University. Faculty of Science. Dept. of Microbiology.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Format81 p. : ill.
RightsStellenbosch University

Page generated in 0.0025 seconds