Return to search

Étude radicalaire de la chimie de l'atmosphère, de l'air intérieur et de la combustion "basse température" par détection de OH et HO2 par technique optique de fluorescence induite par laser - FAGE (Fluorescence Assay by Gas Expansion) / Radical study of atmospheric chemistry, indoor air and "low temperature" combustion, by OH and HO2 detection by optical technique of laser induced fluorescence - FAGE (Fluorescence Assay by Gas Expansion)

Les radicaux OH et HO2 sont des espèces réactives majeures dans de nombreux environnements et les processus chimiques dans lesquels ils sont impliqués sont multiples et complexes. Dans l’atmosphère, OH est le principal oxydant le jour et HO2 lui est fortement lié. OH a également été mesuré récemment en air intérieur, ce qui met en évidence la présence d'une réactivité rapide, potentielle source de polluants secondaires, dans les bâtiments. En combustion, OH et HO2 sont également au cœur de la réactivité. Afin de mieux comprendre les processus chimiques impliquant ces radicaux et par conséquent la formation des polluants dans ces domaines d’application, le dispositif mobile FAGE (Fluorescence Assay by Gas Expansion) a été utilisé lors de cette thèse. Cette technique permet de caractériser OH et HO2 en combinant des mesures de concentration et de temps de vie (réactivité de OH) avec une haute sensibilité et sélectivité ainsi qu’une grande résolution temporelle. Elle est basée sur la détection des radicaux OH et HO2 (après conversion en OH par ajout de NO) par Fluorescence Induite par Laser (LIF) haute cadence après expansion gazeuse et adaptée pour des mesures de réactivité de OH par couplage avec une cellule de photolyse (pump-probe FAGE). Une campagne de mesure, réalisée sur le campus de Lille 1 a permis d’étudier la variation de la réactivité en milieu urbain. Deux campagnes de mesure ont été réalisées en air intérieur pour la mesure de la réactivité de OH et la quantification de OH et HO2. Le dispositif FAGE a également été utilisé pour la première fois pour l'étude de la chimie de la combustion dans un réacteur parfaitement agité (Jet-Stirred Reactor : JSR). / OH and HO2 radicals are major reactive species in many environments and the chemical processes in which they are involved are numerous and complex. In the atmosphere, OH is the main oxidant during the day and HO2 is strongly linked to it. OH has also been measured recently in indoor air; highlighting the presence of a rapid reactivity and therefore a potential source of secondary pollutants in buildings. In combustion, OH and HO2 are also important for the reactivity. To better understand chemical processes involving these radicals and consequently the formation of pollutants in these fields of application, the mobile device FAGE (Fluorescence Assay by Gas Expansion) has been used in this thesis. This technique allows characterizing OH and HO2 by combining concentration and lifetime (OH reactivity) measurements with a high sensitivity, selectivity and temporal resolution. It is based on the detection of OH and HO2 radicals by Laser Induced Fluorescence (LIF) at a high repetition after gas expansion. It is adapted for OH reactivity measurements by the coupling of a photolysis cell (pump-probe FAGE). A field campaign, performed on the Lille 1 campus, allowed the study of the variation of the reactivity in an urban environment. Two field campaigns were performed in indoor air to both measure OH reactivity and quantify OH and HO2. The FAGE device was also used for the first time in the field of combustion chemistry, by coupling it to a Jet-Stirred Reactor (JSR).

Identiferoai:union.ndltd.org:theses.fr/2015LIL10196
Date26 November 2015
CreatorsBlocquet, Marion
ContributorsLille 1, Fittschen, Christa, Schoemaecker, Coralie
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds