Return to search

Collective plasmon resonances in diffractive arrays of gold nanoparticules

Dans ce travail, les propriétés des réseaux diffractifs ordonnés de nanoparticules d'or sont étudiées numériquement et expérimentalement. Ces résonances sont beaucoup plus étroites que celles observées dans le cas d'une nanoparticule isolée. D'après les simulations numériques, deux régimes distincts de réponse sont identifiés, l'un correspond à l'anomalie de Rayleigh (RA) l'autre au mode plasmon de réseau 2D (LPM). Dans la partie expérimentale nous avons fabriqué des réseaux de nanoparticules d'or en utilisant la lithographie d'électronique. La transmission spectrale a été mesurée dans le domaine optique pour caractériser ces réseaux. Toutes les caractéristiques essentielles des spectres expérimentaux sont en bon accord avec les simulations numériques. Les distributions du champ électrique pour différents paramètres de réseau sont étudiées pour obtenir le maximum d'augmentation du champ à la surface de la nanoparticule. L'excitation des résonances plasmon dans les réseaux diffractifs de nanoparticules d'or en condition asymétrique de l'indice de réfraction est examinée expérimentalement. L'excitation des modes plasmon à profil spectral étroit dans l'environnement asymétrique a été expérimentalement vérifiée. La possibilité d'accorder la longueur d'onde de ces résonances dans le proche infrarouge en changeant les paramètres structurels des réseaux périodiques en combinant taille et forme des nanoparticules est discutée. Ces résultats sont importants pour les applications telles que les spectroscopies en champ électrique exalté et la détection en biologie ou en chimie. / The properties of ordered diffractive arrays of gold nanoparticles are studied numerically and experimentally. Using numerical simulations I identify, two distinct regimes of lattice response, associated with two-characteristic states of the spectra: Rayleigh anomaly and lattice plasmon mode. In experimental part gold nanoparticle arrays were fabricated using e-beam lithography. Spectroscopic transmission measurements then were carried out to optically characterize these arrays. All the essential features of the experimental spectra were reproduced well by numerical simulations. Electric field distributions for different lattice parameters are studied in order to maximize the enhancement of electric field at the nanoparticle surface. The excitation of plasmon resonances in diffractive arrays of gold nanoparticles placed in asymmetric refractive index environment is examined experimentally. The excitation of the plasmon modes with narrow spectral profile in asymmetric environment was experimentally verified. The ability to tune the wavelength of these resonances in the near infrared range by varying the structural parameters of the periodic arrays in combination with size and geometry of the constituent nanoparticles is discussed. The presented results are of importance for the field enhanced spectroscopy as well as for plasmonic bio and chemical sensing.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4035
Date18 July 2013
CreatorsNikitin, Andrey
ContributorsAix-Marseille, Dallaporta, Hervé
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0924 seconds