Return to search

La régulation de l’activité transcriptionnelle de FXRa par la phosphorylation, la SUMOylation et l’ubiquitination

Les acides biliaires sont cruciaux pour l’absorption intestinale des lipides et ils représentent une voie majeure d’élimination du cholestérol. À concentration élevée, ils sont cytotoxiques et potentiellement carcinogènes. Il est donc essentiel de maintenir des niveaux adéquats afin de préserver une homéostasie optimale. Le récepteur nucléaire FXR est grandement impliqué dans cette régulation, en étant activé par les acides biliaires qui agissent comme ligands et en régulant les gènes nécessaires à leur synthèse et leur métabolisme. FXR est aussi impliqué dans le métabolisme lipidique et glucidique, tout en ayant un rôle anti-inflammatoire et antiprolifératif. Les mécanismes régulant l’expression et l’activité transcriptionnelle de FXR sont toutefois peu connus. Leur caractérisation pourrait mener à l’identification de nouvelles cibles thérapeutiques pour les pathologies associées au syndrome métabolique.

L’activation des récepteurs nucléaires peut se faire également de façon indépendante du ligand, soit via les modifications post-transcriptionnelles. Celles-ci permettent l’intégration d’une panoplie de signaux extracellulaires et l’adaptation de la réponse transcriptionnelle des récepteurs nucléaires aux variations de conditions cellulaires. La SUMOylation et l’ubiquitination sont deux modifications pouvant affecter la localisation cellulaire des récepteurs, leur interaction avec des partenaires protéiques, l’affinité de liaison au ligand, à l’ADN, leur dimérisation, la dégradation de leurs cibles et l’arrêt de la transcription. Étant donné le rôle important des modifications post-traductionnelles des récepteurs nucléaires en réponse aux divers signaux cellulaires, nous nous sommes intéressés particulièrement à leur impact sur la dégradation et l’activité transcriptionnelle de FXR.

Nos études nous ont permis d’identifier et de caractériser un nouveau site de SUMOylation de FXR, impliqué dans la régulation du récepteur. Le résidu lysine responsable de conjuguer la protéine SUMO est localisé dans un motif non-consensus de SUMOylation, prénommé pSuM, qui est sous le contrôle de la phosphorylation d’un résidu serine régulé par la kinase CK2. Nous avons également déterminé que la modification de FXR par SUMO-2 permet le recrutement de l’ubiquitine E3-ligase SUMO-dépendante RNF4, qui induit l’ubiquitination et la dégradation de FXR. Cette cascade de signalisation est nécessaire pour l’activation transcriptionnelle de FXR et pour la régulation de l’expression des gènes cibles. Elle permet de contrôler ses niveaux protéiques de façon très dynamique et d’assurer ainsi une homéostasie optimale.

Dans la deuxième étude, nous identifions un nouveau signal régulant l’activité transcriptionnelle de FXR. Les récepteurs tyrosine kinase de la famille EGFR/ErbB sont connus pour activer plusieurs voies de signalisation favorisant la croissance et la prolifération cellulaire. Cependant, leur expression et activité sont souvent altérées dans différents cancers, menant à une prolifération tumorale soutenue et dérégulée. Nous démontrons que l’activation des récepteurs de la famille EGFR/ErbB mène à la répression de l’activité transcriptionnelle de FXR en induisant la SUMOylation de FXR sur des résidus lysines situés dans des sites consensus de FXR. Étant donné le rôle antiprolifératif de FXR, l’impact répresseur des récepteurs ErbB sur l’activité de FXR pourrait contribuer à leur potentiel tumorigénique.

Nos résultats approfondissent notre compréhension des mécanismes de régulation de l’expression et de l’activité de FXR. Étant donné son rôle important dans le métabolisme énergétique, la réponse transcriptionnelle de FXR doit être adaptée efficacement aux variations des conditions cellulaires dans un processus de régulation homéostatique. Les modifications post-traductionnelles assurent une régulation dynamique de l’activité de FXR et leur dérégulation pourrait être impliquée dans les pathologies associées au syndrome métabolique. / Bile acids are crucial for the absorption of intestinal lipids, and are directly involved in the efflux pathway to eliminate cholesterol. At high concentrations, bile acids are cytotoxic and potentially carcinogenic. It is therefore essential to maintain bile acids to adequate levels in order to preserve optimal homeostasis. Nuclear receptor FXR is directly involved in bile acid homeostasis by being activated by bile acids to regulate critical genes required for their synthesis and their metabolism. FXR is also involved in lipid and glucose metabolism, as well as having anti-inflammatory and anti-proliferative roles. However, the exact mechanisms regulating the degradation and activity of FXR are not well understood. Therefore, elucidation of FXR activity and response to cellular signals is essential to develop novel strategies and therapeutic targets for pathologies associated with the metabolic syndrome.

Besides ligand activation, nuclear receptor can be regulated in a ligand-independent manner, mainly via post-translational modifications. Such modifications are important to allow homeostatic integration of diverse extracellular signals to ensure adaptation and transcriptional response of nuclear receptors. Among them, SUMOylation and ubiquitination are two modifications that modulate cellular localization of receptors, their interaction with protein partners, ligand binding and sensitivity, DNA affinity, receptor dimerisation, stability of their targets and transcriptional dynamics. Because of the important role of post-translational modifications in nuclear receptor function, we therefore study their specific impact in respect to FXR regulation and transcriptional competence.

In this study, we have identified and characterized a new and non-consensus SUMOylation site involved in the regulation of FXR activity. This site, termed pSuM for phosphorylation-dependent SUMOylation motif, consists of a targeted lysine residue that conjugates SUMO proteins under the control of kinase CK2-mediated phosphorylation. We also determined that such modification of FXR with SUMO-2 induced the recruitment of SUMO-dependent E3 ligase RNF4, resulting in FXR ubiquitination and degradation. We demonstrate that this signaling cascade involving CK2 and RNF4 is required for FXR transcriptional activation and regulation of target gene expression. Our findings identify a cellular pathway that allows a dynamic control of FXR function to ensure efficient bile acid and energy metabolism in cells.

In the second study, we identify a novel cellular signal that regulates FXR activity. Tyrosine kinase receptors of the EGFR/ErbB family are well known to participate in many signaling pathways, promoting cell growth and proliferation. Aberrant expression and activity of ErbB receptors are often associated to various cancers, leading to deregulated proliferation of tumors. Here, we show that ErbB activation leads to repression of FXR transcriptional activity by inducing FXR phosphorylation and specific SUMOylation at consensus sites. Because of the antiproliferative role of FXR, the negative impact of ErbB receptors on FXR transcriptional activity is thought to contribute to their tumorigenic potential.

Altogether, our results expand our understanding of the mechanisms regulating FXR expression and activity. Because of its important role in lipid and energy metabolism, the transcriptional response of FXR needs to be efficiently adapted to variations of cellular conditions in order to achieve essential homeostatic control. As such, post-translational modifications ensure a dynamic regulation of FXR activity and their pathologic deregulation may be involved in diverse diseases associated with metabolic syndrome.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/18542
Date05 1900
CreatorsBilodeau, Stéphanie
ContributorsTremblay, André
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0031 seconds