Three mammalian nuclear lamin proteins, lamin B1, lamin B2 and the lamin A precursor, prelamin A, undergo canonical farnesylation and processing at CAAX motifs. In the case of prelamin A, there is an additional farnesylation-dependent endoproteolysis, which is defective in two congenital diseases: Hutchinson-Gilford progeria (HGPS) and restrictive dermopathy (RD). These two diseases arise respectively from defects in the prelamin A substrate and the enzyme (ZmpSte24) that processes it. Recent work has shed light on the roles of the lamin proteins and the enzymes involved in their farnesylation-dependent maturation. Other experimental work, including mouse model studies, have examined the possibility that farnesyl transferase inhibitors can represent effective treatment for HGPS. However, there are concerns about their use for this purpose given the potential for alternative prenylation pathways.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-19359 |
Date | 15 August 2006 |
Creators | RusiƱol, Antonio, Sinensky, Michael S. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0023 seconds