Botnets are generally recognized as one of the most challenging threats on the Internet today. Botnets have been involved in many attacks targeting multinational organizations and even nationwide internet services. As more effective detection and mitigation approaches are proposed by security researchers, botnet developers are employing new techniques for evasion. It is not surprising that the Domain Name System (DNS) is abused by botnets for the purposes of evasion, because of the important role of DNS in the operation of the Internet. DNS provides a flexible mapping between domain names and IP addresses, thus botnets can exploit this dynamic mapping to mask the location of botnet controllers. Domain-flux and fast-flux (also known as IP-flux) are two emerging techniques which aim at exhausting the tracking and blacklisting effort of botnet defenders by rapidly changing the domain names or their associated IP addresses that are used by the botnet. In this thesis, we employ passive DNS analysis to develop an anomaly-based technique for detecting the presence of a domain-flux or fast- flux botnet in a network. To do this, we construct a lookup graph and a failure graph from captured DNS traffic and decompose these graphs into clusters which have a strong correlation between their domains, hosts, and IP addresses. DNS related features are extracted for each cluster and used as input to a classication module to identify the presence of a domain-flux or fast-flux botnet in the network. The experimental evaluation on captured traffic traces veried that the proposed technique successfully detected domain-flux botnets in the traces. The proposed technique complements other techniques for detecting botnets through traffic analysis. / Botnets betraktas som ett av de svåraste Internet-hoten idag. Botnets har använts vid många attacker mot multinationella organisationer och även nationella myndigheters och andra nationella Internet-tjänster. Allt eftersom mer effektiva detekterings - och skyddstekniker tas fram av säkerhetsforskare, har utvecklarna av botnets tagit fram nya tekniker för att undvika upptäckt. Därför är det inte förvånande att domännamnssystemet (Domain Name System, DNS) missbrukas av botnets för att undvika upptäckt, på grund av den viktiga roll domännamnssystemet har för Internets funktion - DNS ger en flexibel bindning mellan domännamn och IP-adresser. Domain-flux och fast-flux (även kallat IP-flux) är två relativt nya tekniker som används för att undvika spårning och svartlistning av IP-adresser av botnet-skyddsmekanismer genom att snabbt förändra bindningen mellan namn och IP-adresser som används av botnets. I denna rapport används passiv DNS-analys för att utveckla en anomali-baserad teknik för detektering av botnets som använder sig av domain-flux eller fast-flux. Tekniken baseras på skapandet av en uppslagnings-graf och en fel-graf från insamlad DNS-traffik och bryter ned dessa grafer i kluster som har stark korrelation mellan de ingående domänerna, maskinerna, och IP-adresserna. DNSrelaterade egenskaper extraheras för varje kluster och används som indata till en klassifficeringsmodul för identiffiering av domain-flux och fast-flux botnets i nätet. Utvärdering av metoden genom experiment på insamlade traffikspår visar att den föreslagna tekniken lyckas upptäcka domain-flux botnets i traffiken. Genom att fokusera på DNS-information kompletterar den föreslagna tekniken andra tekniker för detektering av botnets genom traffikanalys.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-93842 |
Date | January 2012 |
Creators | Vu Hong, Linh |
Publisher | KTH, Kommunikationssystem, CoS |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-ICT-EX ; 2012:53 |
Page generated in 0.0022 seconds