Return to search

Three Dimensional Retarding Walls And Flow In Their Vicinity

The performance prediction of solid propellant rocket motor depends on the calculation of internal aerodynamics of the motor through its operational life. In order to obtain the control volume, in which the solutions will be carried out, a process called &ldquo / grain burnback calculation&rdquo / is required. During the operation of the motor, as the interface between the solid and gas phases moves towards the solid propellant in a direction normal to the surface, the combustion products are generated and added into the control volume. This phenomenon requires handling of moving boundaries as the solution proceeds.

In this thesis, Fast Marching Method is implemented to the problem of grain burnback. This method uses the upwinding nature of the propellant interface motion and solves the Eikonal type equations on a fixed three-dimensional tetrahedron mesh. The control volume is coupled to a one-dimensional and a three-dimensional Euler aerodynamic solver in order to obtain the performance of the engine. The speed by which the interface moves depends on the static pressure on the surface of the propellant and comes from the solver. Therefore an iterative method has been proposed between the interface capturing algorithms and the flow solver. Both of the calculation results, which are obtained from one-dimensional and three-dimensional solvers are compared with actual rocket firing data and validated.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605668/index.pdf
Date01 December 2001
CreatorsToker, Kemal Atilgan
ContributorsAksel, Haluk Mehmet
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0017 seconds