<p>This thesis describes the structural studies of four different proteins from two organisms. Xyloglucan endotransglycosylases, XETs, are involved in plant cell wall expansion and remodeling by splitting and reconnecting xyloglucan-cellulose crosslinks. The first crystal structure of a XET enzyme has been determined to 1.8 Å. The structure provides insights into how XETs are able to bind a heavily branched xyloglucan sugar, as well as hints about the XET-transglycosylation mechanism.</p><p><i>Mycobacterium tuberculosis</i> (Mtb) is the cause of enormous human mortality each year. Despite the sequencing of the complete Mtb-genome, the biological function of a large fraction of the <i>M. tuberculosis </i>proteins is still unknown. We here report the crystal structures of three such proteins, Rv2740, Rv0216 and Rv0130. Rv2740 forms a Cystatin α+b fold with a deep active site pocket similar to a limonene-1,2-epoxide hydrolase from <i>Rhodococcus erythropolis</i>. However, in contrast to the small limonene-based substrate of the <i>Rhodococcus</i> enzyme, Rv2740 is able to degrade large fatty acid and sterol epoxides, giving suggestions for the physiological substrates of this enzyme.</p><p>The structure of <i>M. tuberculosis</i> Rv0216 exhibits a so-called double hotdog fold. Rv0216 shows similarity to a number of enzymes using thiol esters as substrates, including several <i>R</i>-enoyl hydratases and β-hydroxyacyl dehydratases. However, only parts of the hydratase / dehydratase catalytic site are conserved in Rv0216. Rv0130 in contrast, contains a highly conserved <i>R</i>-hydratase motif, housed in a dimer of two single hotdog folded molecules. This active site is situated in a long tunnel, formed by a sharp kink in the Rv0130 central helix. A number of previously predicted single / double hotdog folded proteins from <i>M. tuberculosis</i> seem to feature a similar substrate-binding tunnel, indicating that Rv0130 as well as some of these proteins, might act on long fatty enoyl chains. </p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-6738 |
Date | January 2006 |
Creators | Johansson, Patrik |
Publisher | Uppsala University, Department of Cell and Molecular Biology, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 162 |
Page generated in 0.0019 seconds